The energy band structure of the conduction band (energy–momentum relation of electrons) is crucial to understanding the electron transport of crystalline materials. In this paper, we describe an angle-resolved low-energy inverse photoelectron spectroscopy (AR-LEIPS) apparatus that examines the conduction band structures of materials sensitive to the electron beam, such as organic semiconductors and organic–inorganic hybrid perovskites. The principle of this apparatus is based on AR inverse photoelectron spectroscopy. To minimize radiation damage and improve energy resolution, we employed our previous approach used in LEIPS [H. Yoshida, Chem. Phys. Lett. 539–540, 180 (2012)]. We obtained an overall energy resolution of 0.23 eV with a momentum resolution of 0.9 nm−1 at the electron kinetic energy of 2 eV or higher.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.