Phosphorescence studies of a series of facial homoleptic cyclometalated iridium(III) complexes have been carried out. The complexes studied have the general structure Ir(III)(C-N)(3), where (C-N) is a monoanionic cyclometalating ligand: 2-(5-methylthiophen-2-yl)pyridinato, 2-(thiophen-2-yl)-5-trifluoromethylpyridinato, 2,5-di(thiophen-2-yl)pyridinato, 2,5-di(5-methylthiophen-2-yl)pyridinato, 2-(benzo[b]thiophen-2-yl)pyridinato, 2-(9,9-dimethyl-9H-fluoren-2-yl)pyridinato, 1-phenylisoquinolinato, 1-(thiophen-2-yl)isoquinolinato, or 1-(9,9-dimethyl-9H-fluoren-2-yl)isoquinolinato. Luminescence properties of all the complexes at 298 K in toluene are as follows: quantum yields of phosphorescence Phi(p) = 0.08-0.29, emission peaks lambda(max) = 558-652 nm, and emission lifetimes tau = 0.74-4.7 micros. Bathochromic shifts of the Ir(thpy)(3) family [the complexes with 2-(thiophen-2-yl)pyridine derivatives] are observed by introducing appropriate substituents, e.g., methyl, trifluoromethyl, or thiophen-2-yl. However, Phi(p) of the red emissive complexes (lambda(max) > 600 nm) becomes small, caused by a significant decrease of the radiative rate constant, k(r). In contrast, the complexes with the 1-arylisoquinoline ligands are found to have marked red shifts of lambda(max) and very high Phi(p) (0.19-0.26). These complexes are found to possess dominantly (3)MLCT (metal-to-ligand charge transfer) excited states and have k(r) values approximately 1 order of magnitude larger than those of the Ir(thpy)(3) family. An organic light-emitting diode (OLED) device that uses Ir(1-phenylisoquinolinato)(3) as a phosphorescent dopant produces very high efficiency (external quantum efficiency eta(ex) = 10.3% and power efficiency 8.0 lm/W at 100 cd/m(2)) and pure-red emission with 1931 CIE (Commission Internationale de L'Eclairage) chromaticity coordinates (x = 0.68, y = 0.32).
A series of highly emissive three-coordinate copper(I) complexes, (dtpb)Cu(I)X [X = Cl (1), Br (2), I (3); dtpb =1,2-bis(o-ditolylphosphino)benzene], were synthesized and investigated in prototype organic light-emitting diodes (OLEDs). 1-3 showed excellent photoluminescent performance in both degassed dichloromethane solutions [quantum yield (Φ) = 0.43-0.60; lifetime (τ) = 4.9-6.5 μs] and amorphous films (Φ = 0.57-0.71; τ = 3.2-6.1 μs). Conventional OLEDs containing 2 in the emitting layer exhibited bright green luminescence with a current efficiency of 65.3 cd/A and a maximum external quantum efficiency of 21.3%.
A series of heteroleptic coinage metal(I) complexes [Cu(PP)(PS)] 1, [Ag(PP)(PS)] 2, and [Au(PP)(PS)] 3 [PP ¼ 1,2-bis(diphenylphosphino)benzene and PS À ¼ 2-diphenylphosphinobenzenethiolate] were synthesized.X-ray crystallography demonstrated that 1-3 possessed tetrahedral structures containing two types of bidentate ligands, PP and PS À . Photophysical studies and time-dependent density functional theory calculations indicated that the emission from 1-3 in the solid state at room temperature originated from thermally activated delayed fluorescence (TADF). The thiolate ligand with strong electron-donating character (PS À ) reduced the contribution from metal orbitals to the highest occupied molecular orbitals of the complexes, decreasing the metal-to-ligand charge-transfer character of the excited states of 1-3.The origin of TADF in 1-3 was attributed to ligand-to-ligand charge-transfer on the basis of molecular orbital calculations. Au(I) complex 3 was unstable in solution because of a rapid ligand exchange reaction, and Ag(I) complex 2 showed limited solubility in organic solvents. Cu(I) complex 1, which exhibited efficient green TADF with a maximum emission wavelength of 521 nm and a quantum yield of 0.52 in the solid state, was used to fabricate TADF-type organic light-emitting diodes via a wet process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.