HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SUMMARY Induced calcite precipitation is used in geotechnics to modify the mechanical and hydrological properties of the underground. Laboratory experiments have shown that spectral induced polarization (SIP) measurements can detect calcite precipitation. However, the results of previous studies investigating the SIP response of calcite precipitation were not fully consistent. This study aims to investigate how the SIP response of calcite depends on solute concentration to explain the differences in SIP response observed in previous studies. A four-phase experiment with SIP measurements on a column filled with sand was performed. In phase I, calcite precipitation was generated for a period of 12 days by co-injecting Na2CO3 and CaCl2 solutions through two different ports. This resulted in a well-defined calcite precipitation front, which was associated with an increase in the imaginary part of the conductivity ($\sigma ^{\prime\prime}$). In phase II, diluted solutions were injected into the column. This resulted in a clear decrease in $\sigma ^{\prime\prime}$. In phase III, the injection of the two solutions was stopped while calcite precipitation continued and solute concentrations in the mixing zone decreased. Again, this decreased $\sigma ^{\prime\prime}$. Finally, the injection rate of the Na2CO3 solution was reduced relative to that of the CaCl2 solution in phase IV. This resulted in a shift of the mixing zone away from the calcite precipitation front established in phase I and an associated decrease of $\sigma ^{\prime\prime}$. These results imply that the SIP response of calcite is highly sensitive to the solute concentration near the precipitates, which may explain previously reported conflicting results.
Mixing fronts at the interface of opposing flows are compressed at a constant rate. The resulting exponential stretching of fluid elements leads to enhanced chemical gradients and biogeochemical processes. This process is similar as what occurs in the pore space of 3D chaotic flows. However, it is so far not known how such fluid compression controls the amplitude of mixing and reaction rates in porous media. Here we derive analytical predictions for the mixing width, the maximum reaction rate and the reaction intensity in compressed mixing fronts as a function of the Péclet and Damköhler numbers. We developed an experimental setup providing pore scale measurements of mixing and reaction rates in mixing fronts at the interface of converging flows. The theory accurately predicts the scaling of mixing and reaction with the Péclet number both in porous micromodels and simple Hele‐Shaw cells. Additionally, we found that the presence of pore scale heterogeneities in the porous micromodels enhances reaction rates by a factor of 4 compared to the Hele‐Shaw cells. Using numerical simulations of pore scale velocity fields, we attributed this phenomenon to the enhancement of pore‐scale compression due to the presence of grains in accelerating flows. These findings provide new insights into the dynamics of mixing‐induced reactions in porous media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.