The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists.
The Challenge on Liver Ultrasound Tracking (CLUST) was held in conjunction with the MICCAI 2014 conference to enable direct comparison of tracking methods for this application. This paper reports the outcome of this challenge, including setup, methods, results and experiences. The database included 54 2D and 3D sequences of the liver of healthy volunteers and tumor patients under free breathing. Participants had to provide the tracking results of 90% of the data (test set) for pre-defined point-landmarks (healthy volunteers) or for tumor segmentations (patient data). In this paper we compare the best six methods which participated in the challenge. Quantitative evaluation was performed by the organizers with respect to manual annotations. Results of all methods showed a mean tracking error ranging between 1.4 mm and 2.1 mm for 2D points, and between 2.6 mm and 4.6 mm for 3D points. Fusing all automatic results by considering the median tracking results, improved the mean error to 1.2 mm (2D) and 2.5 mm (3D). For all methods, the performance is still not comparable to human inter-rater variability, with a mean tracking error of 0.5–0.6 mm (2D) and 1.2–1.8 mm (3D). The segmentation task was fulfilled only by one participant, resulting in a Dice coefficient ranging from 76.7% to 92.3%. The CLUST database continues to be available and the online leader-board will be updated as an ongoing challenge.
Surgical tool detection is attracting increasing attention from the medical image analysis community. The goal generally is not to precisely locate tools in images, but rather to indicate which tools are being used by the surgeon at each instant. The main motivation for annotating tool usage is to design efficient solutions for surgical workflow analysis, with potential applications in report generation, surgical training and even real-time decision support. Most existing tool annotation algorithms focus on laparoscopic surgeries. However, with 19 million interventions per year, the most common surgical procedure in the world is cataract surgery. The CATARACTS challenge was organized in 2017 to evaluate tool annotation algorithms in the specific context of cataract surgery. It relies on more than nine hours of videos, from 50 cataract surgeries, in which the presence of 21 surgical tools was manually annotated by two experts. With 14 participating teams, this challenge can be considered a success. As might be expected, the submitted solutions are based on deep learning. This paper thoroughly evaluates these solutions: in particular, the quality of their annotations are compared to that of human interpretations. Next, lessons learnt from the differential analysis of these solutions are discussed. We expect that they will guide the design of efficient surgery monitoring tools in the near future.
Liver motion estimation and prediction during free-breathing from 2D ultrasound images can substantially reduce the in-plane motion uncertainty and hence treatment margins. Employing an accurate tracking method while avoiding non-linear temporal prediction would be favorable. This approach has the potential to shorten treatment time compared to breath-hold and gated approaches, and increase treatment efficiency and safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.