The translational and rotational motion of a camphor scraping at an air/water interface was investigated. The characteristics of the rotation depended on the temperature, surface tension, and the chemical structure of the camphor derivative. The direction of rotation, either clockwise or counterclockwise, is determined by asymmetry in the shape of the solid camphor scraping. The essential features of the motion of a camphor scraping were reproduced by a computer simulation. The driving force on this motion is believed to be the spatial heterogeneity of the camphor layer at the air-water interface.
Real-time daily healthcare monitoring may increase the chances of predicting and diagnosing diseases in their early stages which, currently, occurs most frequently during medical check-ups. Next-generation noninvasive healthcare devices, such as flexible multifunctional sensor sheets designed to be worn on skin, are considered to be highly suitable candidates for continuous real-time health monitoring. For healthcare applications, acquiring data on the chemical state of the body, alongside physical characteristics such as body temperature and activity, are extremely important for predicting and identifying potential health conditions. To record these data, in this study, we developed a wearable, flexible sweat chemical sensor sheet for pH measurement, consisting of an ion-sensitive field-effect transistor (ISFET) integrated with a flexible temperature sensor: we intend to use this device as the foundation of a fully integrated, wearable healthcare patch in the future. After characterizing the performance, mechanical flexibility, and stability of the sensor, real-time measurements of sweat pH and skin temperature are successfully conducted through skin contact. This flexible integrated device has the potential to be developed into a chemical sensor for sweat for applications in healthcare and sports.
The development of self-propelled motors that mimic biological motors is an important challenge for the transport of either themselves or some material in a small space, since biological systems exhibit high autonomy and various types of responses, such as taxis and swarming. In this perspective, we review non-living systems that behave like living matter. We especially focus on nonlinearity to enhance autonomy and the response of the system, since characteristic nonlinear phenomena, such as oscillation, synchronization, pattern formation, bifurcation, and hysteresis, are coupled to self-motion of which driving force is the difference in the interfacial tension. Mathematical modelling based on reaction-diffusion equations and equations of motion as well as physicochemical analysis from the point of view of the molecular structure are also important for the design of non-living motors that mimic living motors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.