Rhagoletis pomonella is a model for incipient sympatric speciation (divergence without geographic isolation) by host-plant shifts. Here, we show that historically derived apple-and ancestral hawthorn-infesting host races of the fly use fruit odor as a key olfactory cue to help distinguish between their respective plants. In flight-tunnel assays and field tests, apple and hawthorn flies preferentially oriented to, and were captured with, chemical blends of their natal fruit volatiles. Because R. pomonella rendezvous on or near the unabscised fruit of their hosts to mate, the behavioral preference for apple vs. hawthorn fruit odor translates directly into premating reproductive isolation between the fly races. We have therefore identified a key and recently evolved (<150 years) mechanism responsible for host choice in R. pomonella bearing directly on sympatric host race formation and speciation.
We describe a strategy for developing hydrophilic chemical cocktails for tissue delipidation, decoloring, refractive index (RI) matching, and decalcification, based on comprehensive chemical profiling. More than 1,600 chemicals were screened by a high-throughput evaluation system for each chemical process. The chemical profiling revealed important chemical factors: salt-free amine with high octanol/water partition-coefficient (logP) for delipidation, N-alkylimidazole for decoloring, aromatic amide for RI matching, and protonation of phosphate ion for decalcification. The strategic integration of optimal chemical cocktails provided a series of CUBIC (clear, unobstructed brain/body imaging cocktails and computational analysis) protocols, which efficiently clear mouse organs, mouse body including bone, and even large primate and human tissues. The updated CUBIC protocols are scalable and reproducible, and they enable three-dimensional imaging of the mammalian body and large primate and human tissues. This strategy represents a future paradigm for the rational design of hydrophilic clearing cocktails that can be used for large tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.