Subcortical white matter (WM) is a frequent target of ischemic injury and extensive WM lesions are important substrates of vascular cognitive impairment (VCI) in humans. However, ischemic stroke rodent models have been shown to mainly induce cerebral infarcts in the gray matter, while cerebral hypoperfusion models show only WM rarefaction without infarcts. The lack of animal models consistently replicating WM infarct damage may partially explain why many neuroprotective drugs for ischemic stroke or VCI have failed clinically, despite earlier success in preclinical experiments. Here, we report a novel animal model of WM infarct damage with cognitive impairment can be generated by surgical implantation of different devices to the right and left common carotid artery (CCA) in C57BL/6J mice. Implantation of an ameroid constrictor to the right CCA resulted in gradual occlusion of the vessel over 28 d, whereas placement of a microcoil to the left CCA induced ϳ50% arterial stenosis. Arterial spin labeling showed a gradual reduction of cerebral blood flow over 28 d post operation. Such reductions were more marked in the right, compared with the left, hemisphere and in subcortical, rather than the cortical, areas. Histopathological analysis showed multiple infarct damage in right subcortical regions, including the corpus callosum, internal capsule, hippocampal fimbria, and caudoputamen, in 81% of mice. Mice displaying such damage performed significantly poorer in locomotor and cognitive tests. The current mouse model replicates the phenotypes of human subcortical VCI, including multiple WM infarcts with motor and cognitive impairment.
Hyperglycemia alters PI3k and Akt signaling and leads to endothelial cell proliferative dysfunction. Diabetes mellitus is a major risk factor for the development of vascular complications. We hypothesized that hyperglycemia decreases endothelial cell (EC) proliferation and survival via phosphatidylinositol 3-kinase (PI3k) and Akt signaling pathways. We cultured human umbilical vein ECs (HUVEC) in 5, 20, or 40 mM D-glucose. Cells grown in 5, 20, and 40 mM mannitol served as a control for osmotic effects. We measured EC proliferation for up to 15 days. We assessed apoptosis by annexin V and propidium iodide staining and flow cytometry, analyzed cell lysates obtained on culture day 8 for total and phosphorylated PI3k and Akt by Western blot analysis, and measured Akt kinase activity using a GSK fusion protein. HUVEC proliferation was also tested in the presence of pharmacological inhibitors of PI3k-Akt (wortmannin and LY294002) and after transfection with a constitutively active Akt mutant. ECs in media containing 5 mM D-glucose (control) exhibited log-phase growth on days 7-10. D-Glucose at 20 and 40 mM significantly decreased proliferation versus control (P Ͻ 0.05 for both), whereas mannitol did not impair EC proliferation. Apoptosis increased significantly in HUVEC exposed to 40 mM D-glucose. DGlucose at 40 mM significantly decreased tyrosine-phosphorylated PI3k, threonine 308-phosphorylated-Akt, and Akt activity relative to control 5 mM D-glucose. Pharmacological inhibition of PI3k-Akt resulted in a dose-dependent decrease in EC proliferation. Transfection with a constitutively active Akt mutant protected ECs by enhancing proliferation when grown in 20 and 40 mM D-glucose. We conclude that D-glucose regulates Akt signaling through threonine phosphorylation of Akt and that hyperglycemia-impaired PI3k-Akt signaling may promote EC proliferative dysfunction in diabetes. endothelial cell proliferation; diabetes mellitus; phosphatidylinositol 3-kinase; protein kinase B; Akt; endothelial cell apoptosis DIABETES MELLITUS is a major risk factor for the development of vascular complications leading to a threefold increase in death relative to nondiabetic patients (21). Complications characteristically involve both macrovascular and microvascular circulations in several organs (8a, 43a). Microvascular complications include proliferative retinopathy, autonomic neuropathy, and nephropathy (9, 24, 35). However, macrovascular complications such as ischemic heart disease (45), peripheral vascular disease (36), and thromboembolic stroke (26) are the major contributors to morbidity and mortality in diabetes (4, 15).
ObjectiveBrain amyloidosis is a key feature of Alzheimer's disease (AD). It also incorporates cerebrovascular amyloid β (Aβ) in the form of cerebral amyloid angiopathy (CAA) involving neurovascular dysfunction. We have recently shown by retrospective analysis that patients with mild cognitive impairment receiving a vasoactive drug cilostazol, a selective inhibitor of phosphodiesterase (PDE) III, exhibit significantly reduced cognitive decline. Here, we tested whether cilostazol protects against the disruption of the neurovascular unit and facilitates the arterial pulsation-driven perivascular drainage of Aβ in AD/CAA.MethodsWe explored the expression of PDE III in postmortem human brain tissue followed by a series of experiments examining the effects of cilostazol on Aβ metabolism in transgenic mice (Tg-SwDI mice) as a model of cerebrovascular β-amyloidosis, as well as cultured neurons.ResultsWe established that PDE III is abnormally upregulated in cerebral blood vessels of AD and CAA subjects and closely correlates with vascular amyloid burden. Furthermore, we demonstrated that cilostazol treatment maintained cerebral hyperemic and vasodilative responses to hypercapnia and acetylcholine, suppressed degeneration of pericytes and vascular smooth muscle cells, promoted perivascular drainage of soluble fluorescent Aβ1-40, and rescued cognitive deficits in Tg-SwDI mice. Although cilostazol decreased endogenous Aβ production in cultured neurons, C-terminal fragment of amyloid precursor protein expression was not altered in cilostazol-treated Tg-SwDI mice.InterpretationThe predominant action of cilostazol on Aβ metabolism is likely to facilitate Aβ clearance due to the sustained cerebrovascular function in vivo. Our findings mechanistically demonstrate that cilostazol is a promising therapeutic approach for AD and CAA.
Pyrrole-imidazole (Py-Im) polyamides are nuclease-resistant novel compounds that inhibit gene expression by binding to the minor groove of DNA. A Py-Im polyamide that targets rat TGF-1 was designed as a gene-silencing agent for progressive renal diseases, and the distribution and the effects of this polyamide on renal injury were examined in Dahl-salt sensitive (Dahl-S) rats. For identification of transcription factor binding elements for activation of the rat TGF-1 gene, recombinant TGF-1 reporter plasmids were transfected into HEK-293 cells, and promoter activity was measured. Py-Im polyamide was designed to the activator protein-1 binding site of the rat TGF-1 promoter. This Py-Im polyamide showed strong, fast, and specific binding to the target DNA in gel mobility shift and Biacore assays. Py-Im polyamide significantly inhibited TGF-1 promoter activity and expression of TGF-1 mRNA and protein in rat mesangial cells. Intravenously administered fluorescein-labeled polyamide distributed to the kidney of rats. Py-Im polyamide significantly inhibited expression of TGF-1 mRNA and protein in the renal cortex of Dahl-S rats and reduced the increase in urinary protein and albumin in Dahl-S rats independent of changes in blood pressure. These results indicate that Py-Im polyamide that targets TGF-1 will be a novel gene-silencing agent for the TGF-1-associated diseases, including progressive renal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.