Cortical microinfarcts (CMIs) observed in brains of patients with Alzheimer’s disease tend to be located close to vessels afflicted with cerebral amyloid angiopathy (CAA). CMIs in Alzheimer’s disease are preferentially distributed in the arterial borderzone, an area most vulnerable to hypoperfusion. However, the causal association between CAA and CMIs remains to be elucidated. This study consists of two parts: (1) an observational study using postmortem human brains (n = 31) to determine the association between CAA and CMIs, and (2) an experimental study to determine whether hypoperfusion worsens CAA and induces CMIs in a CAA mouse model. In postmortem human brains, the density of CMIs was 0.113/cm2 in mild, 0.584/cm2 in moderate, and 4.370/cm2 in severe CAA groups with a positive linear correlation (r = 0.6736, p < 0.0001). Multivariate analysis revealed that, among seven variables (age, disease, senile plaques, neurofibrillary tangles, CAA, atherosclerosis and white matter damage), only the severity of CAA was a significant multivariate predictor of CMIs (p = 0.0022). Consistent with the data from human brains, CAA model mice following chronic cerebral hypoperfusion due to bilateral common carotid artery stenosis induced with 0.18-mm diameter microcoils showed accelerated deposition of leptomeningeal amyloid β (Aβ) with a subset of them developing microinfarcts. In contrast, the CAA mice without hypoperfusion exhibited very few leptomeningeal Aβ depositions and no microinfarcts by 32 weeks of age. Following 12 weeks of hypoperfusion, cerebral blood flow decreased by 26% in CAA mice and by 15% in wild-type mice, suggesting impaired microvascular function due to perivascular Aβ accumulation after hypoperfusion. Our results suggest that cerebral hypoperfusion accelerates CAA, and thus promotes CMIs.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-011-0925-9) contains supplementary material, which is available to authorized users.
White matter hyperintensities are associated with post-stroke cognitive dysfunction, but the underlying mechanisms are unclear. Chen et al. provide evidence from human and experimental studies that clasmatodendrosis – a marker of irreversible astrocyte damage – and gliovascular abnormalities are increased in the frontal white matter of subjects who succumb to vascular dementia.
Glucose transporter 1 (GLUT1) plays an important role in the transport of glucose in the placenta. During early pregnancy, placentation occurs in a relatively hypoxic environment that is essential for appropriate embryonic development, and GLUT1 expression is enhanced in response to oxygen deficiency in the placenta. Hypoxia-inducible factor-1 (HIF-1)alpha is involved in the induction of GLUT1 expression in other cells. The present study was designed to test whether HIF-1alpha is involved in hypoxia-induced activation of GLUT1 expression using trophoblast-derived human BeWo and rat Rcho-1 cells as models. GLUT1 mRNA and protein expression were elevated under 5% O2 or in the presence of cobalt chloride, which has been shown to mimic hypoxia. Using rat GLUT1 (rGLUT1) promoter-luciferase constructs, we showed that this up-regulation was mediated at the transcriptional level. Deletion mutant analysis of the rGLUT1 promoter indicated that a 184 bp hypoxia-responsive element (HRE) of the promoter was essential to increase GLUT1 reporter gene expression in response to low-oxygen conditions. BeWo and Rcho-1 cells cultured under 5% O2 or with CoCl2 showed increased expression of HIF-1alpha protein compared with those cultured under 20% O2. To test whether this factor is directly involved in hypoxia-induced GLUT1 promoter activation, BeWo and Rcho-1 cells were transiently transfected with an HIF-1alpha expression vector. Exogeneous HIF-1alpha markedly increased the GLUT1 promoter activity from constructs containing the HRE site, while the GLUT1 promoter constructs lacking the HRE site were not activated by exogenous HIF-1alpha These data demonstrate that GLUT1 is up-regulated under 5% O2 or in the presence of CoCl2 in the placental cell lines through HIF-1alpha interaction with a consensus HRE site of the GLUT1 promoter.
ObjectiveBrain amyloidosis is a key feature of Alzheimer's disease (AD). It also incorporates cerebrovascular amyloid β (Aβ) in the form of cerebral amyloid angiopathy (CAA) involving neurovascular dysfunction. We have recently shown by retrospective analysis that patients with mild cognitive impairment receiving a vasoactive drug cilostazol, a selective inhibitor of phosphodiesterase (PDE) III, exhibit significantly reduced cognitive decline. Here, we tested whether cilostazol protects against the disruption of the neurovascular unit and facilitates the arterial pulsation-driven perivascular drainage of Aβ in AD/CAA.MethodsWe explored the expression of PDE III in postmortem human brain tissue followed by a series of experiments examining the effects of cilostazol on Aβ metabolism in transgenic mice (Tg-SwDI mice) as a model of cerebrovascular β-amyloidosis, as well as cultured neurons.ResultsWe established that PDE III is abnormally upregulated in cerebral blood vessels of AD and CAA subjects and closely correlates with vascular amyloid burden. Furthermore, we demonstrated that cilostazol treatment maintained cerebral hyperemic and vasodilative responses to hypercapnia and acetylcholine, suppressed degeneration of pericytes and vascular smooth muscle cells, promoted perivascular drainage of soluble fluorescent Aβ1-40, and rescued cognitive deficits in Tg-SwDI mice. Although cilostazol decreased endogenous Aβ production in cultured neurons, C-terminal fragment of amyloid precursor protein expression was not altered in cilostazol-treated Tg-SwDI mice.InterpretationThe predominant action of cilostazol on Aβ metabolism is likely to facilitate Aβ clearance due to the sustained cerebrovascular function in vivo. Our findings mechanistically demonstrate that cilostazol is a promising therapeutic approach for AD and CAA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.