The novel immunosuppressant AS1387392 has been isolated from Acremonium sp. No. 27082. This compound showed a strong inhibitory effect against mammalian histone deacetylase and T-cell proliferation. Further, AS1387392 showed a good oral absorption, and its plasma concentration was higher than that of FR235222, an analog of AS1387392 that inhibited histone deacetylase previously reported. Given these findings, AS1387392 may represent an important new lead in developing immunosuppressant.
We report characterization of the biosynthetic pathway of the potent immunosuppressant (−)-FR901483 (1) through heterologous expression and enzymatic assays. The biosynthetic logic to form the azatricyclic alkaloid is consistent with those proposed in biomimetic syntheses and involves aza-spiro annulation of dityrosyl-piperazine to form a ketoaldehyde intermediate, followed by regioselective aldol condensation, stereoselective ketoreduction, and phosphorylation. A possible target of 1 is proposed based on the biosynthetic studies.
ABSTRACT-The effect of antisense oligodeoxynucleotides (ODNs) of plasma membrane Ca 2+ -pumping ATPase (PMCA) on rat aortic vascular smooth muscle cells (VSMCs) in primary culture was examined. More than 80% of the PMCA expressed in cultured VSMCs was the PMCA-1B subtype. Exposed to antisense ODNs against PMCA-1, not only the expression of the PMCA protein but also mRNA of PMCA-1B was diminished in a concentration-dependent manner. Extracellular Na + -independent 45 Ca 2+ efflux catalyzed via PMCA was inhibited with antisense ODNs. Both the resting and ionomycin-or ATP-stimulated levels of intracellular Ca 2+ were increased by antisense ODNs. Furthermore, prolonged treatment with antisense ODNs caused apoptosis in VSMCs. The occurrence of apoptosis was inhibited by FK506, a potent immunosuppressant. These results demonstrate that the PMCA was specifically inhibited by antisense ODNs and suggest that PMCA plays an important role in regulation of intracellular Ca 2+ concentrations, especially at the resting condition to prevent an occurrence of apoptosis that may be induced through the activation of calcineurin.
Effects of hypertension on the function of the Na+/Ca2+ exchanger (NCX) were investigated by analyzing vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats. Angiotensin II-induced 45Ca2+ efflux from VSMCs mediated by NCX was enhanced by up to 3-fold in SHR compared with WKY, whereas ionomycin-induced Ca efflux mediated by NCX was not different between SHR and WKY. The decline rate from the peak value of intracellular 45Ca2+ concentration ([Ca2+]i) mobilized by angiotensin II was decelerated by removal of extracellular sodium (Na+o) in SHR but not in WKY. Gene expressions of NCX subtype 1 and angiotensin II receptor type1A assessed by quantitative RT-PCR were increased by 1.3- and 1.5-fold, respectively in SHR compared with WKY. NCX protein was also increased 1.6-fold in SHR compared with WKY. MEK inhibitor, PD98059, partly blocked the Nao-dependent acceleration of the [Ca2+]i recovery rate and tyrosine kinase inhibitor, genistein, diminished it in SHR. Genistein decreased angiotensin II-induced Nao- dependent 45Ca2+ efflux. However, angiotensin II did not enhance the tyrosine phosphorylation of NCX. These results suggest that acceleration of Ca2+ efflux from VSMCs of SHR was at least partly due to the enhancement of functional activity of NCX via increased gene expression and tyrosine phosphorylation in connection with hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.