This survey covers fifteen years of research in the Named Entity Recognition and Classification (NERC) field, from 1991 to 2006. We report observations about languages, named entity types, domains and textual genres studied in the literature. From the start, NERC systems have been developed using hand-made rules, but now machine learning techniques are widely used. These techniques are surveyed along with other critical aspects of NERC such as features and evaluation methods. Features are word-level, dictionary-level and corpus-level representations of words in a document. Evaluation techniques, ranging from intuitive exact match to very complex matching techniques with adjustable cost of errors, are an indisputable key to progress.
Discovering the significant relations embedded in documents would be very useful not only for information retrieval but also for question answering and summarization. Prior methods for relation discovery, however, needed large annotated corpora which cost a great deal of time and effort. We propose an unsupervised method for relation discovery from large corpora. The key idea is clustering pairs of named entities according to the similarity of context words intervening between the named entities. Our experiments using one year of newspapers reveals not only that the relations among named entities could be detected with high recall and precision, but also that appropriate labels could be automatically provided for the relations.
Paraphrases play an important role in the variety and complexity of natural language documents. However they adds to the difficulty of natural language processing. Here we describe a procedure for obtaining paraphrases from news article. A set of paraphrases can be useful for various kinds of applications. Articles derived from different newspapers can contain paraphrases if they report the same event of the same day. We exploit this feature by using Named Entity recognition. Our basic approach is based on the assumption that Named Entities are preserved across paraphrases. We applied our method to articles of two domains and obtained notable examples. Although this is our initial attempt to automatically extracting paraphrases from a corpus, the results are promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.