Transcription factors (TFs) determine the transcription activity of target genes and play a central role in controlling the transcription in response to various environmental stresses. Three dimensional genome structures such as local loops play a fundamental role in the regulation of transcription, although the link between such structures and the regulation of TF binding to cis-regulatory elements remains to be elucidated. Here, we show that during transcriptional activation of the fission yeast fbp1 gene, binding of Rst2 (a critical C2H2 zinc-finger TF) is mediated by a local loop structure. During fbp1 activation, Rst2 is first recruited to upstream-activating sequence 1 (UAS1), then it subsequently binds to UAS2 (a critical cis-regulatory site located approximately 600 base pairs downstream of UAS1) through a loop structure that brings UAS1 and UAS2 into spatially close proximity. Tup11/12 (the Tup-family corepressors) suppress direct binding of Rst2 to UAS2, but this suppression is counteracted by the recruitment of Rst2 at UAS1 and following delivery to UAS2 through a loop structure. These data demonstrate a previously unappreciated mechanism for the recruitment and expansion of TF-DNA interactions within a promoter mediated by local three-dimensional genome structures and for timely TF-binding via counteractive regulation by the Tup-family corepressors.
Numerous noncoding RNA transcripts are detected in eukaryotic cells. Noncoding RNAs transcribed across gene promoters are involved in the regulation of mRNA transcription via chromatin modulation. This function of noncoding RNA transcription was first demonstrated for the fission yeast fbp1 gene, where a cascade of noncoding RNA transcription events induces chromatin remodeling to facilitate transcription factor binding. We recently demonstrated that the noncoding RNAs from the fbp1 upstream region facilitate binding of the transcription activator Atf1 and thereby promote histone acetylation. Histone acetylation by histone acetyl transferases (HATs) and ATP-dependent chromatin remodelers (ADCRs) are implicated in chromatin remodeling, but the interplay between HATs and ADCRs in this process has not been fully elucidated. Here, we examine the roles played by two distinct ADCRs, Snf22 and Hrp3, and by the HAT Gcn5 in the transcriptional activation of fbp1. Snf22 and Hrp3 redundantly promote disassembly of chromatin in the fbp1 upstream region. Gcn5 critically contributes to nucleosome eviction in the absence of either Snf22 or Hrp3, presumably by recruiting Hrp3 in snf22∆ cells and Snf22 in hrp3∆ cells. Conversely, Gcn5-dependent histone H3 acetylation is impaired in snf22∆/hrp3∆ cells, suggesting that both redundant ADCRs induce recruitment of Gcn5 to the chromatin array in the fbp1 upstream region. These results reveal a previously unappreciated interplay between ADCRs and histone acetylation in which histone acetylation facilitates recruitment of ADCRs, while ADCRs are required for histone acetylation.
Long noncoding RNAs (lncRNAs) transcribed across gene promoters have been detected. These regulate transcription by mechanisms that have not been fully elucidated. We herein show that the chromatin configuration is altered into an accessible state within 290 bp downstream from the initiation site of metabolic-stress-induced lncRNAs (mlonRNAs) in the promoter of the fission yeast fbp1 gene, whose transcription is massively induced upon glucose starvation. Chromatin upstream from fbp1 is progressively altered into an open configuration, as a cascade of transcription of three overlapping mlonRNA species (-a, -b and -c in order) occurs with transcriptional initiation sites progressing 5′ to 3′ upstream of the fbp1 promoter. Initiation of the shortest mlonRNA (mlonRNA-c) induces chromatin remodeling around a transcription factor-binding site and subsequent massive induction of fbp1. We identify the cis-element required for mlonRNA-c initiation, and by changing the distance between mlonRNA-initiation site and the transcription factor-binding site, we show that mlonRNA-initiation effectively induces chromatin remodeling in a limited distance within 290 bp. These results indicate that mlonRNAs are transcribed across the fbp1 promoter as a short-range inducer for local chromatin alterations, and suggest that strict chromatin modulation is archived via stepwise mlonRNA-initiations.
Noncoding RNAs (ncRNAs) are involved in various biological processes, including gene expression, development, and disease. Here, we identify a novel consensus sequence of a cis-element involved in long ncRNA (lncRNA) transcription and demonstrate that lncRNA transcription from this cis-element activates meiotic recombination via chromatin remodeling. In the fission yeast fbp1 gene, glucose starvation induces a series of promoter-associated lncRNAs, referred to as metabolic-stress-induced lncRNAs (mlonRNAs), which contribute to chromatin remodeling and fbp1 activation. Translocation of the cis-element required for mlonRNA into a well-characterized meiotic recombination hotspot, ade6-M26, further stimulates transcription and meiotic recombination via local chromatin remodeling. The consensus sequence of this cis-element (mlon-box) overlaps with meiotic recombination sites in the fission yeast genome. At one such site, the SPBC24C6.09c upstream region, meiotic double-strand break (DSB) formation is induced in an mlon-box-dependent manner. Therefore, mlonRNA transcription plays a universal role in chromatin remodeling and the regulation of transcription and recombination.
Transcriptional regulation, a pivotal biological process by which cells adapt to environmental fluctuations, is achieved by the binding of transcription factors to target sequences in a sequence-specific manner. However, how transcription factors recognize the correct target from amongst the numerous candidates in a genome has not been fully elucidated. We here show that, in the fission-yeast fbp1 gene, when transcription factors bind to target sequences in close proximity, their binding is reciprocally stabilized, thereby integrating distinct signal transduction pathways. The fbp1 gene is massively induced upon glucose starvation by the activation of two transcription factors, Atf1 and Rst2, mediated via distinct signal transduction pathways. Atf1 and Rst2 bind to the upstream-activating sequence 1 region, carrying two binding sites located 45 bp apart. Their binding is reciprocally stabilized due to the close proximity of the two target sites, which destabilizes the independent binding of Atf1 or Rst2. Tup11/12 (Tup-family co-repressors) suppress independent binding. These data demonstrate a previously unappreciated mechanism by which two transcription-factor binding sites, in close proximity, integrate two independent-signal pathways, thereby behaving as a hub for signal integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.