Advanced glycation end products (AGEs) include a variety of protein adducts whose accumulation alters the structure and function of tissue proteins and stimulates cellular responses. They have been implicated in tissue damage associated with diabetic complications. To assess the possible link between AGE accumulation and the development of diabetic nephropathy (DN), we have examined the immunohistochemical localization of various AGE structures postulated to date, i.e., pentosidine, Nepsilon-(carboxymethyl)lysine (CML), and pyrraline, in diabetic and control kidneys. CML and pentosidine accumulate in the expanded mesangial matrix and thickened glomerular capillary walls of early DN and in nodular lesions and arterial walls of advanced DN, but were absent in control kidneys. By contrast, pyrraline was not found within diabetic glomeruli but was detected in the interstitial connective tissue of both normal and diabetic kidneys. Although the distribution of pyrraline was topographically identical to type III collagen, distribution of pentosidine and CML was not specific for collagen type, suggesting that difference in matrix protein composition per se could not explain heterogeneous AGE localization. Since oxidation is linked closely to the formation of pentosidine and CML, we also immunostained malondialdehyde (MDA), a lipid peroxidation product whose formation is accelerated by oxidative stress, assuming that local oxidative stress may serve as a mechanism of pentosidine and CML accumulation. Consistent with our assumption, diabetic nodular lesions were stained positive for MDA. These findings show that AGE localization in DN varies according to AGE structure, and suggest that the colocalization of markers of glycoxidation (pentosidine and CML) with a marker of lipid peroxidation reflects a local oxidative stress in association with the pathogenesis of diabetic glomerular lesions. Thus, glycoxidation markers may serve as useful biomarkers of oxidative damage in DN.
Immune attacks are key issues for cell transplantation. To assess the safety and the immune reactions after iPS cells-derived retinal pigment epithelium (iPS-RPE) transplantation, we transplanted HLA homozygote iPS-RPE cells established at an iPS bank in HLA-matched patients with exudative age-related macular degeneration. In addition, local steroids without immunosuppressive medications were administered. We monitored immune rejections by routine ocular examinations as well as by lymphocytes-graft cells immune reaction (LGIR) tests using graft RPE and the patient’s blood cells. In all five of the cases that underwent iPS-RPE transplantation, the presence of graft cells was indicated by clumps or an area of increased pigmentation at 6 months, which became stable with no further abnormal growth in the graft during the 1-year observation period. Adverse events observed included corneal erosion, epiretinal membrane, retinal edema due to epiretinal membrane, elevated intraocular pressure, endophthalmitis, and mild immune rejection in the eye. In the one case exhibiting positive LGIR tests along with a slight fluid recurrence, we administrated local steroid therapy that subsequently resolved the suspected immune attacks. Although the cell delivery strategy must be further optimized, the present results suggest that it is possible to achieve stable survival and safety of iPS-RPE cell transplantation for a year.
Incompletely condensed, fluorinated polyhedral oligomeric silsesquioxane with the highly reactive group of trisodium silanolate was used for the synthesis of an initiator for atom transfer radical polymerization. The initiator was applied to solution polymerization of methyl methacrylate (MMA) in the presence of a copper complex. The polymerization proceeded in a living fashion, providing tadpole-shaped polymers with an “inorganic head” of polyhedral oligomeric silsesquioxane (POSS) and an “organic tail” of well-defined PMMA. A blend film composed of the tadpole-shaped polymer and a matrix PMMA was annealed at 180 °C for 5 days and then analyzed by neutron reflectometry, X-ray photoelectron spectroscopy, and contact angle measurement. These analyses revealed that the tadpole-shaped polymer was preferentially populated at the air/polymer interface, and the outermost layer of the film was almost completely covered by the POSS heads. This was mainly due to the low surface free energy of the fluorinated POSS moiety. Owing to this unique structure, the blend film showed strong resistance against Ar+ ion etching, despite the overall POSS content was only 2 wt %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.