The trophoblast cell lineage is essential for the survival of the mammalian embryo in utero. This lineage is specified before implantation into the uterus and is restricted to form the fetal portion of the placenta. A culture of mouse blastocysts or early postimplantation trophoblasts in the presence of fibroblast growth factor 4 (FGF4) permitted the isolation of permanent trophoblast stem cell lines. These cell lines differentiated to other trophoblast subtypes in vitro in the absence of FGF4 and exclusively contributed to the trophoblast lineage in vivo in chimeras.
Agonist-induced activation of peroxisome proliferator-activated receptor gamma (PPAR gamma) is known to cause adipocyte differentiation and insulin sensitivity. The biological role of PPAR gamma was investigated by gene targeting. Homozygous PPAR gamma-deficient embryos died at 10.5-11.5 dpc due to placental dysfunction. Quite unexpectedly, heterozygous PPAR gamma-deficient mice were protected from the development of insulin resistance due to adipocyte hypertrophy under a high-fat diet. These phenotypes were abrogated by PPAR gamma agonist treatment. Heterozygous PPAR gamma-deficient mice showed overexpression and hypersecretion of leptin despite the smaller size of adipocytes and decreased fat mass, which may explain these phenotypes at least in part. This study reveals a hitherto unpredicted role for PPAR gamma in high-fat diet-induced obesity due to adipocyte hypertrophy and insulin resistance, which requires both alleles of PPAR gamma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.