Unmanned aerial vehicles (UAVs) and digital photogrammetric techniques are two recent advances in remote sensing (RS) technology that are emerging as alternatives to high-cost airborne laser scanning (ALS) data sources. Despite the potential of UAVs in forestry applications, very few studies have included detailed analyses of UAV photogrammetric products at larger scales or over a range of forest types, including mixed conifer-broadleaf forests. In this study, we assessed the performance of fixed-wing UAV photogrammetric products of a mixed conifer-broadleaf forest with varying levels of canopy structural complexity. We demonstrate that fixed-wing UAVs are capable of efficiently collecting image data at local scales and that UAV imagery can be effectively utilized with digital photogrammetric techniques to provide detailed automated reconstruction of the three-dimensional (3D) canopy surface of mixed conifer-broadleaf forests. When combined with an accurate digital terrain model (DTM), UAV photogrammetric products are promising for producing reliable structural measurements of the forest canopy. However, the performance of UAV photogrammetric products is likely to be influenced by the structural complexity of the forest canopy. Furthermore, we highlight the potential of fixed-wing UAVs in operational forest management at the forest management compartment level, for acquiring high-resolution imagery at low cost. A future direction of this research would be to address the issue of how well the photogrammetric products can predict the actual structure of mixed conifer-broadleaf forests.
Accurate assessment of above-ground biomass (AGB) is important for the sustainable management of forests, especially buffer zone (areas within the protected area, where restrictions are placed upon resource use and special measure are undertaken to intensify the conservation value of protected area) areas with a high dependence on forest products. This study presents a new AGB estimation method and demonstrates the potential of medium-resolution Sentinel-2 Multi-Spectral Instrument (MSI) data application as an alternative to hyperspectral data in inaccessible regions. Sentinel-2 performance was evaluated for a buffer zone community forest in Parsa National Park, Nepal, using field-based AGB as a dependent variable, as well as spectral band values and spectral-derived vegetation indices as independent variables in the Random Forest (RF) algorithm. The 10-fold cross-validation was used to evaluate model effectiveness. The effect of the input variable number on AGB prediction was also investigated. The model using all extracted spectral information plus all derived spectral vegetation indices provided better AGB estimates (R 2 = 0.81 and RMSE = 25.57 t ha −1 ). Incorporating the optimal subset of key variables did not improve model variance but reduced the error slightly. This result is explained by the technically-advanced nature of Sentinel-2, which includes fine spatial resolution (10, 20 m) and strategically-positioned bands (red-edge), conducted in flat topography with an advanced machine learning algorithm. However, assessing its transferability to other forest types with varying altitude would enable future performance and interpretability assessments of Sentinel-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.