SummaryOnly graminaceous monocots possess the Strategy II iron (Fe)-uptake system in which Fe is absorbed by roots as an Fe 3þ -phytosiderophore. In spite of being a Strategy II plant, however, rice (Oryza sativa) contains the previously identified Fe 2þ transporter OsIRT1. In this study, we isolated the OsIRT2 gene from rice, which is highly homologous to OsIRT1. Real-time PCR analysis revealed that OsIRT1 and OsIRT2 are expressed predominantly in roots, and these transporters are induced by low-Fe conditions. When expressed in yeast (Saccharomyces cerevisiae) cells, OsIRT2 cDNA reversed the growth defects of a yeast Fe-uptake mutant. This was similar to the effect of OsIRT1 cDNA. OsIRT1-and OsIRT2-green fluorescent protein fusion proteins localized to the plasma membrane when transiently expressed in onion (Allium cepa L.) epidermal cells.OsIRT1 promoter-GUS analysis revealed that OsIRT1 is expressed in the epidermis and exodermis of the elongating zone and in the inner layer of the cortex of the mature zone of Fe-deficient roots. OsIRT1 expression was also detected in the ccompanion cells. Analysis using the positron-emitting tracer imaging system showed that rice plants are able to take up both an Fe 3þ -phytosiderophore and Fe 2þ . This result indicates that, in addition to absorbing an Fe 3þ -phytosiderophore, rice possesses a novel Fe-uptake system that directly absorbs the Fe 2þ , a strategy that is advantageous for growth in submerged conditions.
A novel EGFR-tyrosine kinase inhibitor (TKI), osimertinib, has marked efficacy in patients with EGFR-mutated lung cancer. However, some patients show intrinsic resistance and an insufficient response to osimertinib. This study showed that osimertinib stimulated AXL by inhibiting a negative feedback loop. Activated AXL was associated with EGFR and HER3 in maintaining cell survival and inducing the emergence of cells tolerant to osimertinib. AXL inhibition reduced the viability of EGFR-mutated lung cancer cells overexpressing AXL that were exposed to osimertinib. The addition of an AXL inhibitor during either the initial or tolerant phases reduced tumor size and delayed tumor re-growth compared to osimertinib alone. AXL was highly expressed in clinical specimens of EGFR-mutated lung cancers and its high expression was associated with a low response rate to EGFR-TKI. These results indicated pivotal roles for AXL and its inhibition in the intrinsic resistance to osimertinib and the emergence of osimertinib-tolerant cells.
SummaryMugineic acid family phytosiderophores (MAs) are metal chelators that are produced in graminaceous plants in response to iron (Fe) deficiency, but current evidence regarding secretion of MAs during zinc (Zn) deficiency is contradictory. Our studies using HPLC analysis showed that Zn deficiency induces the synthesis and secretion of MAs in barley plants. The levels of the HvNAS1, HvNAAT-A, HvNAAT-B, HvIDS2 and HvIDS3 transcripts, which encode the enzymes involved in the synthesis of MAs, were increased in Zn-deficient roots. Studies of the genes involved in the methionine cycle using microarray analysis showed that the transcripts of these genes were increased in both Zn-deficient and Fe-deficient barley roots, probably allowing the plant to meet its demand for methionine, a precursor in the synthesis of MAs. In addition, HvNAAT-B transcripts were detected in Zn-deficient shoots, but not in those that were deficient in Fe. Increased synthesis of MAs in Zndeficient barley was not due to a deficiency of Fe, because Zn-deficient barley accumulated more Fe than did the control plants, ferritin transcripts were increased in Zn-deficient plants, and Zn deficiency promoted Fe transport from root to shoot. Moreover, analysis using the positron-emitting tracer imaging system (PETIS) confirmed that more 62 Zn(II)-MAs than 62 Zn 2þ were absorbed by the roots of Zn-deficient barley plants. These data suggest that the increased biosynthesis and secretion of MAs arising from a shortage of Zn are not due to an induced Fe deficiency, and that secreted MAs are effective in absorbing Zn from the soil.
Introduction:In non–small-cell lung cancer, an exon 19 deletion and an L858R point mutation in the epidermal growth factor receptor (EGFR) are predictors of a response to EGFR-tyrosine kinase inhibitors. However, it is uncertain whether other uncommon EGFR mutations are associated with sensitivity to EGFR-tyrosine kinase inhibitors.Methods:A post-hoc analysis to assess prognostic factors was performed with the use of patients with EGFR mutations (exon 19 deletion, L858R, G719X, and L861Q) who were treated with gefitinib in the NEJ002 study, which compared gefitinib with carboplatin-paclitaxel as the first-line therapy.Results:In the NEJ002 study, 225 patients with EGFR mutations received gefitinib at any treatment line. The Cox proportional hazards model indicated that performance status, response to chemotherapy, response to gefitinib, and mutation types were significant prognostic factors. Overall survival (OS) was significantly shorter among patients with uncommon EGFR mutations (G719X or L861Q) compared with OS of those with common EGFR mutations (12 versus 28.4 months; p = 0.002). In the gefitinib group (n = 114), patients with uncommon EGFR mutations had a significantly shorter OS (11.9 versus 29.3 months; p < 0.001). By contrast, OS was similar between patients with uncommon mutations and those with common mutations in the carboplatin-paclitaxel group (n = 111; 22.8 versus 28 months; p = 0.358).Conclusions:The post-hoc analyses clearly demonstrated shorter survival for gefitinib-treated patients with uncommon EGFR mutations compared with the survival of those with common mutations and suggest that the first-line chemotherapy may be relatively effective for non–small-cell lung cancer with uncommon EGFR mutations.
BackgroundGefitinib was the first epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) approved for the treatment of advanced non-small cell lung cancer (NSCLC). Few treatment options are available for NSCLC patients who have responded to gefitinib treatment and demonstrated tumor progression. The present study was conducted to evaluate the efficacy and toxicity of the 2nd EGFR-TKI administration.MethodsWe retrospectively analyzed 11 patients who had obtained a partial response (PR) or stable disease (SD) with gefitinib treatment and were re-treated with EGFR-TKI after failure of the initial gefitinib treatment.ResultsThree patients (27%) were treated with gefitinib as the 2nd EGFR-TKI, and 8 patients (73%) received erlotinib. Only one patient (9%) showed PR, 7 (64%) achieved SD, and 3 (27%) had progressive disease. The disease control rate was 73% (95% CI, 43% - 91%) and the median progression-free survival was 3.4 months (95% CI, 2 - 5.2). The median overall survival from the beginning of the 2nd EGFR-TKI and from diagnosis were 7.3 months (95% CI, 2.7 - 13) and 36.7 months (95% CI, 23.6 - 43.9), respectively. No statistical differences in PFS or OS were observed between gefitinib and erlotinib as the 2nd EGFR-TKI (PFS, P = 0.23 and OS, P = 0.052). The toxicities associated with the 2nd EGFR-TKI were generally acceptable and comparable to those observed for the initial gefitinib therapy.ConclusionsOur results indicate that a 2nd EGFR-TKI treatment can be an effective treatment option for gefitinib responders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.