A universal method has been developed for measuring spectra of molecular ions in a 22-pole radio frequency trap at 5 K. It is based on laser induced inhibition of complex growth (LIICG). The first successful measurements have been demonstrated on the A 2Π u ← X 2Σ g + electronic transition with some thousand N2 + ions, helium densities of 1015 cm–3, and storage times of 1 s. The reduction of the number of N2 +–He complexes is the result of an interplay between excitation, radiative and collisional cooling, ternary association, and collision induced dissociation, which is explained by a kinetic model.
We report on molecular-level studies of the condensation of propane gas and propane/ethane gas mixtures in the uniform (constant pressure and temperature) postnozzle flow of Laval expansions using soft single-photon ionization by vacuum ultraviolet light and mass spectrometric detection. The whole process, from the nucleation to the growth to molecular aggregates of sizes of several nanometers (∼5 nm), can be monitored at the molecular level with high time-resolution (∼3 μs) for a broad range of pressures and temperatures. For each time, pressure, and temperature, a whole mass spectrum is recorded, which allows one to determine the critical cluster size range for nucleation as well as the kinetics and mechanisms of cluster-size specific growth. The detailed information about the size, composition, and population of individual molecular clusters upon condensation provides unique experimental data for comparison with future molecular-level simulations.
A new charge detection mass spectrometer that combines array detection and electrostatic ion trapping to repeatedly measure the masses of single ions is described. This instrument has four detector tubes inside an electrostatic ion trap with conical electrodes (cone trap) to provide multiple measurements of an ion on each pass through the trap resulting in a signal gain over a conventional trap with a single detection tube. Simulations of a cone trap and a dual ion mirror trap design indicate that more passes through the trap per unit time are possible with the latter. However, the cone trap has the advantages that ions entering up to 2 mm off the central axis of the trap are still trapped, the trapping time is less sensitive to the background pressure, and only a narrow range of energies are trapped so it can be used for energy selection. The capability of this instrument to obtain information about the molecular weight distributions of heterogeneous high molecular weight samples is demonstrated with 8 MDa polyethylene glycol (PEG) and 50 and 100 nm amine modified polystyrene nanoparticle samples. The measured mass distribution of the PEG sample is centered at 8 MDa. The size distribution obtained from mass measurements of the 100 nm nanoparticle sample is similar to the size distribution obtained from transmission electron microscopy (TEM) images, but most of the smaller nanoparticles observed in TEM images of the 50 nm nanoparticles do not reach a sufficiently high charge to trigger the trap on a single pass and be detected by the mass spectrometer. With the maximum trapping time set to 100 ms, the charge uncertainty is as low as ±2 charges and the mass uncertainty is approximately 2% for PEG and polystyrene ions.
We report water cluster formation in the uniform postnozzle flow of a Laval nozzle at low temperatures of 87.0 and 47.5 K and high supersaturations of lnS ∼ 41 and 104, respectively. Cluster size distributions were measured after soft single-photon ionization at 13.8 eV with mass spectrometry. Critical cluster sizes were determined from cluster size distributions recorded as a function of increasing supersaturation, resulting in critical sizes of 6-15 and 1, respectively. Comparison with previous data for propane and toluene reveals a systematic trend in the nucleation behavior, i.e., a change from a steplike increase to a gradual increase of the maximum cluster size with increasing supersaturation. Experimental nucleation rates of 5 · 1015 cm−3 s−1 and 2 · 1015 cm−3 s−1 for lnS ∼ 41 and 104, respectively, were retrieved from cluster size distributions recorded as a function of nucleation time. These lie 2-3 orders of magnitude below the gas kinetic collision limit assuming unit sticking probability, but they agree very well with a recent prediction by a master equation model based on ab initio transition state theory. The experimental observations are consistent with barrierless growth at 47.5 K, but they hint at a more complex nucleation behavior for the measurement at 87.0 K.
Toluene cluster formation has been investigated in the postnozzle flows of Laval expansions at flow temperatures between ∼48 and 73 K, toluene number concentrations between ∼10 and 10 cm, and for growth times of up to ∼170 μs. The clusters were detected by soft ionization mass spectrometry to ensure minimum cluster fragmentation upon ionization. The optimum conditions were achieved with single-photon ionization using vacuum ultraviolet (VUV) photons of 13.3 eV energy and low fluences. The nature of the onset of toluene cluster formation hints at barrierless nucleation, which seems a likely scenario for the high supersaturations (>10) of the present experiments. This contrasts with the onset behavior observed for propane in earlier studies, which suggested nucleation in the presence of a barrier. Subsequent cluster growth has been studied as a function of the growth time for various toluene partial pressures. Size-resolved growth data have been recorded for all cluster sizes from the dimer to aggregates composed of ∼2400 monomers (∼4.4 nm in size), revealing general trends in the growth behavior. The current experiments provide systematic size- and time-resolved data on cluster formation at high supersaturations as a possible benchmark for the understanding of cluster formation under such conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.