In multiple cancer types, high tumor mutational burden (TMB) is associated with longer survival after treatment with immune checkpoint inhibitors (ICI). The association of TMB with survival outside of the immunotherapy context is poorly understood. We analyzed 10,233 patients (80% non-ICI-treated, 20% ICI-treated) with 17 cancer types, before/without ICI treatment, or after ICI treatment. In non-ICI-treated patients, higher TMB (higher percentile within cancer type) was not associated with better prognosis; in fact, in many cancer types, higher TMB was associated with poorer survival, in contrast to ICI-treated patients, in whom higher TMB was associated with longer survival.
The genetic, biologic, and clinical heterogeneity of sarcomas poses a challenge for the identification of therapeutic targets, clinical research, and advancing patient care. Because there are > 100 sarcoma subtypes, in-depth genetic studies have focused on one or a few subtypes. Herein, we report a comparative genetic analysis of 2,138 sarcomas representing 45 pathological entities. This cohort is prospectively analyzed using targeted sequencing to characterize subtype-specific somatic alterations in targetable pathways, rates of whole genome doubling, mutational signatures, and subtype-agnostic genomic clusters. The most common alterations are in cell cycle control and TP53, receptor tyrosine kinases/PI3K/RAS, and epigenetic regulators. Subtype-specific associations include TERT amplification in intimal sarcoma and SWI/SNF alterations in uterine adenosarcoma. Tumor mutational burden, while low compared to other cancers, varies between and within subtypes. This resource will improve sarcoma models, motivate studies of subtype-specific alterations, and inform investigations of genetic factors and their correlations with treatment response.
PURPOSE Urothelial cancers (UCs) have a substantial hereditary component, but, other than their association with Lynch syndrome, the contribution of genetic risk factors to UC pathogenesis has not been systematically defined. We sought to determine the prevalence of pathogenic/likely pathogenic (P/LP) germline variants in patients with UC and identify associated clinical factors. PATIENTS AND METHODS Overall, 586 patients with UC underwent prospective, matched tumor-normal DNA sequencing. Seventy-seven genes associated with cancer predisposition were analyzed; allele frequencies were compared with publicly available database. RESULTS P/LP germline variants were identified in 80 (14%) of 586 individuals with UC. The most common P/LP variants in high- or moderate-penetrance genes were BRCA2 (n = 9; 1.5%), MSH2 (n = 8; 1.4%), BRCA1 (n = 8; 1.4%), CHEK2 (n = 6; 1.0%), ERCC3 (n = 4; 0.7%), and NBN and RAD50 (n = 3; 0.5% each). Sixty-six patients (83%) had germline P/LP variants in DNA-damage repair (DDR) genes, of which 28 (42%) had biallelic inactivation. Patients with P/LP variants were more commonly diagnosed at an early age (22% v 6% in those without variants; P = .01). BRCA2 and MSH2 were significantly associated with an increased risk for UC (odds ratio, 3.7 [ P = .004] and 4.6 [ P = .001], respectively). Current clinical guidelines for referral for genetic testing failed to identify 6 (26%) patients with high-penetrance variants. CONCLUSION Clinically significant P/LP germline variants in DDR genes frequently are present in patients with advanced UC. The presence of DDR germline variants could guide cancer screening for patients and their families and serve as predictive biomarkers of response to targeted or immunotherapies. Family history–based criteria to identify patients with hereditary UC susceptibility are insensitive. Broader germline testing in UC, particularly in those of young ages, should be considered.
PURPOSE Microsatellite instability-high (MSI-H) colorectal carcinomas (CRCs) show high rates of response to immune checkpoint inhibitors (IOs). B2M mutations and protein loss have been proposed as causes of resistance to IOs, yet they are enriched in MSI-H CRC. We aimed to characterize B2M-mutant, IO-naive CRC. PATIENTS AND METHODS All CRCs with results for Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets, a next-generation sequencing assay that interrogates > 400 genes for mutations as well as MSI status, were surveyed for B2M mutations. All B2M-mutant CRCs were assessed for expression of B2M, major histocompatibility complex class I, and programmed death-1 ligand (PD-L1) via immunohistochemistry and average CD3+ and CD8+ tumor-infiltrating lymphocyte counts against a control group of MSI-H B2M wild-type CRCs. RESULTS Fifty-nine (3.4%) of 1,751 patients with CRC harbored B2M mutations, with 84% (77 of 92) of the mutations predicted to be truncating. B2M mutations were significantly enriched in MSI-H CRCs, with 44 (24%) of 182 MSI-H CRCs harboring B2M mutations (P < .001). Thirty-two of 44 B2M-mutant CRCs with available material (73%) had complete loss of B2M expression, whereas all 26 CRCs with wild-type B2M retained expression (P < .001). B2M mutation status was not associated with major histocompatibility complex class I expression, KRAS or BRAF mutation, tumor-infiltrating lymphocyte level, or PD-L1 expression after adjustment for MSI status. Of 13 patients with B2M-mutant CRC who received programmed death-1 or PD-L1 IOs, 11 (85%) achieved clinical benefit, defined as stable disease or partial response using Response Evaluation Criteria in Solid Tumors criteria. CONCLUSION B2M mutations occur in approximately 24% of MSI-H CRCs and are usually associated with loss of B2M expression. Most patients with B2M-mutant MSI-H CRC with loss of protein expression obtain clinical benefit from IOs.
Immunohistochemistry for mismatch repair protein expression is widely used as a surrogate for microsatellite instability status-an important signature for immunotherapy and germline testing. There are no systematic analyses examining the sensitivity of immunohistochemistry for microsatellite instability-high status. Mismatch repair immunohistochemistry and microsatellite instability testing were performed routinely as clinically validated assays. We classified germline/ somatic mutation types as truncating (nonsense, frameshift, in/del) versus missense and predicted pathogenicity of the latter. Discordant cases were compared to concordant groups: microsatellite instability-high/ mismatch repair-deficient for mutation comparison and microsatellite stable/ mismatch repair-proficient for immunohistochemical comparison. 32 of 443 (7%) microsatellite instability-high cases had immunohistochemistry. Four additional microsatellite instability-high research cases had discordant immunohistochemistry. Of 36 microsatellite instability-high cases with discordant immnohistochemistry, 30 were mismatch repair-proficient while 6 (5 MLH1 and 1 MSH2) retained expression of the defective mismatch repair protein and lost its partner. In microsatellite instability-high tumors with discordant immunohistochemistry, we observed an enrichment in deleterious missense mutations over truncating mutations, with nearly 70% (25/36) of cases having pathogenic germline or somatic missense mutations, as opposed to only 17% (6/36) in a matched microsatellite instability-high group with concordant immunohistochemistry (p=0.0007). In microsatellite instability-high cases with discordant immunohistochemistry and MLH1 or PMS2 abnormalities, less cells showed expression (p=0.015 and p=0.00095 respectively) compared to microsatellite stable/ mismatch repair-proficient cases. Tumor mutation burden, MSIsensor score, and truncating mismatch repair gene mutations were similar between microsatellite instability-high cases with concordant versus discordant immunohistochemical Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.