Thermally activated delayed fluorescence (TADF) finds application in organic light-emitting diodes. The molecules exhibiting TADF are characterized by small singlet−triplet energy gaps that help reverse intersystem crossing. Recently, ionization potential (IP)-tuned range-separated (RS) density functionals have been well accepted for studying excited-state properties. In the present work, two efficient descriptor-based tuning schemes [electron localization function (ELF) and Sol] of RS density functionals have been used to accurately reproduce the excited-state properties of TADF emitters by performing a single self-consistent field calculation. The lowest singlet vertical excitation energies (E VA (S 1 )) and the vertical singlet−triplet energy gaps (ΔE VST ) are computed with ELF-, Sol-, and IP-tuned RS functionals (LC-BLYP, ωB97, ωB97X, and ωB97XD). Encouraging mean absolute deviations from the experimental values with ELF*-, Sol*-, and IP-tuned functionals are observed. Consistent performance of the non-empirical tuned functionals is noted in different solvent dielectrics. In addition to these, fractional occupation calculations have shown that our tuned functionals almost satisfy the energy linearity curve. Thus, ELF*and Sol*-tuned functionals are promising and reliable alternatives in computing the excited-state properties. Considering the small experimental singlet−triplet gap, we recommend ELF* to calculate E VA (S 1 ) and Sol* to calculate ΔE VST .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.