Ozonide OZ439 is a synthetic peroxide antimalarial drug candidate designed to provide a single-dose oral cure in humans. OZ439 has successfully completed Phase I clinical trials, where it was shown to be safe at doses up to 1,600 mg and is currently undergoing Phase IIa trials in malaria patients. Herein, we describe the discovery of OZ439 and the exceptional antimalarial and pharmacokinetic properties that led to its selection as a clinical drug development candidate. In vitro, OZ439 is fast-acting against all asexual erythrocytic Plasmodium falciparum stages with IC 50 values comparable to those for the clinically used artemisinin derivatives. Unlike all other synthetic peroxides and semisynthetic artemisinin derivatives, OZ439 completely cures Plasmodium berghei -infected mice with a single oral dose of 20 mg/kg and exhibits prophylactic activity superior to that of the benchmark chemoprophylactic agent, mefloquine. Compared with other peroxide-containing antimalarial agents, such as the artemisinin derivatives and the first-generation ozonide OZ277, OZ439 exhibits a substantial increase in the pharmacokinetic half-life and blood concentration versus time profile in three preclinical species. The outstanding efficacy and prolonged blood concentrations of OZ439 are the result of a design strategy that stabilizes the intrinsically unstable pharmacophoric peroxide bond, thereby reducing clearance yet maintaining the necessary Fe(II)-reactivity to elicit parasite death.
Single electron reduction of the 1,2,4-trioxane heterocycle of artemisinin (1) forms primary and secondary carbon-centered radicals. The complex structure of 1 does not lend itself to a satisfactory dissection of the electronic and steric effects that influence the formation and subsequent reaction of these carbon-centered free radicals. To help demarcate these effects, we characterized the reactions of achiral dispiro-1,2,4-trioxolane 4 and dispiro-1,2,4-trioxanes 5-7 with ferrous bromide and 4-oxo-TEMPO. Our results suggest a small preference for attack of Fe(II) on the nonketal peroxide oxygen atom of 1. For 4, but not for 5 and 6, there was a strong preference for attack of Fe(II) on the less hindered peroxide bond oxygen atom. The steric hindrance afforded by a spiroadamantane in a five-membered trioxolane is evidently much greater than that for a corresponding six-membered trioxane. Unlike 1, 5-7 fragment by entropically favored beta-scission pathways forming relatively stable alpha-oxa carbon-centered radicals. These data suggest that formation of either primary or secondary carbon-centered radicals is a necessary but insufficient criterion for antimalarial activity of 1 and synthetic peroxides.
Antioxidants are one of the key players in tumorigenesis, several natural and synthetic antioxidants were shown to have anticancer effects. The aim of the present study is to divulge the chemopreventive nature of carvacrol during diethylnitrosamine (DEN)-induced liver cancer in male wistar albino rats. Administration of DEN to rats resulted in increased relative liver weight and serum marker enzymes aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and gamma glutamyl transpeptidase (γGT). The levels of lipid peroxides elevated (in both serum and tissue) with subsequent decrease in the final body weight and tissue antioxidants like superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR). Carvacrol supplementation (15 mg/kg body weight) significantly attenuated these alterations, thereby showing potent anticancer effect in liver cancer. Histological observations and transmission electron microscopy studies were also carried out, which added supports to the chemopreventive action of the carvacrol against DEN-induction during liver cancer progression. These findings suggest that carvacrol prevents lipid peroxidation, hepatic cell damage, and protects the antioxidant system in DEN-induced hepatocellular carcinogenesis.
Neuroblastoma is a neural crest-derived embryonal tumour of the postganglionic sympathetic nervous system and a disease with several different chromosomal gains and losses, which include MYCN-amplified neuroblastoma on chromosome 2, deletions of parts of the chromosomes 1p and 11q, gain of parts of 17q and triploidy. Recently, activating mutations of the ALK (Anaplastic Lymphoma Kinase) RTK (Receptor Tyrosine Kinase) gene have been described in neuroblastoma. A meta-analysis of neuroblastoma cases revealed that ALK mutations (49 of 709 cases) in relation to genomic subtype were most frequently observed in MYCN amplified tumours (8.9%), correlating with a poor clinical outcome. MYCN proteins target proliferation and apoptotic pathways, and have an important role in the progression of neuroblastoma. Here, we show that both wild-type and gain-of-function mutants in ALK are able to stimulate transcription at the MYCN promoter and initiate mRNA transcription of the MYCN gene in both neuronal and neuroblastoma cell lines. Further, this stimulation of MYCN gene transcription and de novo MYCN protein expression is abrogated by specific ALK inhibitors, such as crizotinib (PF-2341066), NVP-TAE684, and by small interfering RNA to ALK resulting in a decrease in proliferation rate. Finally, co-transfection of ALK gain-of-function mutations together with MYCN leads to an increase in transformation potential. Taken together, our results indicate that ALK signalling regulates initiation of transcription of the MYCN gene providing a possible explanation for the poor clinical outcome observed when MYCN is amplified together with activated ALK.Oncogene (2012) 31, 5193 --5200; doi:10.1038/onc.2012.12; published online 30 January 2012Keywords: neuroblastoma; anaplastic lymphoma kinase; ALK; MYCN; transcription factor INTRODUCTION Neuroblastoma is a neural crest-derived embryonal tumour of the postganglionic sympathetic nervous system and accounts for B15% of all deaths due to paediatric tumours. 1,2 Genetically, many cases of neuroblastoma show amplification of the MYCN gene (B24% of all cases), deletions of parts of the chromosomes 1p and 11q, gain of parts of 17q and triploidy. 1,3 --6 Anaplastic Lymphoma Kinase (ALK) Receptor Tyrosine Kinase (RTK) is mutated in both familial and somatic neuroblastoma. 7 --11 Moreover, these reports also indicated that downregulation or inhibition of ALK led to a marked decrease of cell proliferation, suggesting ALK as a critical factor in the initiation and progression of neuroblastoma. The ALK RTK was first described in the mid-nineties and aberrant ALK protein activity is now implicated in a range of nonhematopoietic, hematopoietic as well as neuroendocrine tumours (for a review see Palmer et al. 12 ). A recent meta-analysis of neuroblastoma has reported ALK gain-of-function mutations to be present at a frequency of 6.9% of investigated neuroblastoma tumours. Further, a comparison of the ALK mutation frequency in relation to genomic subtype revealed that ALK mutations were most frequently obs...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.