Type I and type II natural killer T (NKT) cells are restricted to the lipid antigen-presenting molecule CD1d. While we have an understanding of the antigen reactivity and function of type I NKT cells, our knowledge of type II NKT cells in health and disease remains unclear. Here we describe a population of type II NKT cells that recognise and respond to the microbial antigen, α-glucuronosyl-diacylglycerol (α-GlcADAG) presented by CD1d, but not the prototypical type I NKT cell agonist, α-galactosylceramide. Surprisingly, the crystal structure of a type II NKT TCR-CD1d-α-GlcADAG complex reveals a CD1d F’-pocket-docking mode that contrasts sharply with the previously determined A’-roof positioning of a sulfatide-reactive type II NKT TCR. Our data also suggest that diverse type II NKT TCRs directed against distinct microbial or mammalian lipid antigens adopt multiple recognition strategies on CD1d, thereby maximising the potential for type II NKT cells to detect different lipid antigens.
A palladium-catalyzed microwave-assisted one-pot reaction for the synthesis of isoquinolines is developed. The reaction is carried out by sequential coupling-imination-annulation reactions of ortho-bromoarylaldehydes and terminal alkynes with ammonium acetate, and a variety of substituted isoquinolines, furopyridines, and thienopyridines is prepared in moderate to excellent yields (up to 86%).
Background: There is mounting evidence that in utero and early life exposures may predispose an individual to metabolic disorders in later life; and dysregulation of lipid metabolism is critical in such outcomes. However, there is limited knowledge about lipid metabolism and factors causing lipid dysregulation in early life that could result in adverse health outcomes in later life. We studied the effect of antenatal factors such as gestational age, birth weight and mode of birth on lipid metabolism at birth; changes in the circulating lipidome in the first four years of life and the effect of breastfeeding in the first year of life. From this study, we aim to generate a framework for deeper understanding into factors effecting lipid metabolism in early life, to provide early interventions for those at risk of developing metabolic disorders including cardiovascular diseases. Methods and findings: We performed comprehensive lipid profiling of 1074 mother-child dyads in the Barwon Infant Study (BIS), a population based pre-birth cohort and measured 776 distinct lipid species across 42 lipid classes using ultra high-performance liquid chromatography (UHPLC). We measured lipids in 1032 maternal serum samples at 28 weeks' gestation, 893 cord serum samples at birth, 793, 735, and 511 plasma samples at six, twelve months, and four years, respectively. The lipidome differed between mother and newborn and changed markedly with increasing child's age. Cord serum was enriched with long chain poly-unsaturated fatty acids (LC-PUFAs), and corresponding cholesteryl esters relative to the maternal serum. Alkenylphosphatidylethanolamine species containing LC-PUFAs increased with child's age, whereas the corresponding lysophospholipids and triglycerides decreased. We performed regression analyses to investigate the associations of cord serum lipid species with antenatal factors: gestational age, birth weight, mode of birth and duration of labor. Majority of the cord serum lipids were strongly associated with gestational age and birth weight, with most lipids showing opposing associations. Each mode of birth showed an independent association with cord serum lipids. Breastfeeding had a significant impact on the plasma lipidome in the first year of life, with upto 17-fold increases in a few species of alkyldiaclylglycerols at 6 months of age. Conclusions: This study sheds light on lipid metabolism in infancy and early childhood and provide a framework to define the relationship between lipid metabolism and health outcomes in early childhood. Funding Statement: This work was supported by the A*STAR-NHMRC joint call funding (1711624031).
Background Lipids play a vital role in health and disease, but changes to their circulating levels and the link with obesity remain poorly characterized in expecting mothers and their offspring in early childhood. Methods LC-MS/MS-based quantitation of 480 lipid species was performed on 2491 plasma samples collected at 4 time points in the mother-offspring Asian cohort GUSTO (Growing Up in Singapore Towards healthy Outcomes). These 4 time points constituted samples collected from mothers at 26–28 weeks of gestation (n=752) and 4–5 years postpartum (n=650), and their offspring at birth (n=751) and 6 years of age (n=338). Linear regression models were used to identify the pregnancy and developmental age-specific variations in the plasma lipidomic profiles, and their association with obesity risk. An independent birth cohort (n=1935), the Barwon Infant Study (BIS), comprising mother-offspring dyads of Caucasian origin was used for validation. Results Levels of 36% of the profiled lipids were significantly higher (absolute fold change > 1.5 and Padj < 0.05) in antenatal maternal circulation as compared to the postnatal phase, with phosphatidylethanolamine levels changing the most. Compared to antenatal maternal lipids, cord blood showed lower concentrations of most lipid species (79%) except lysophospholipids and acylcarnitines. Changes in lipid concentrations from birth to 6 years of age were much higher in magnitude (log2FC=−2.10 to 6.25) than the changes observed between a 6-year-old child and an adult (postnatal mother) (log2FC=−0.68 to 1.18). Associations of cord blood lipidomic profiles with birth weight displayed distinct trends compared to the lipidomic profiles associated with child BMI at 6 years. Comparison of the results between the child and adult BMI identified similarities in association with consistent trends (R2=0.75). However, large number of lipids were associated with BMI in adults (67%) compared to the children (29%). Pre-pregnancy BMI was specifically associated with decrease in the levels of phospholipids, sphingomyelin, and several triacylglycerol species in pregnancy. Conclusions In summary, our study provides a detailed landscape of the in utero lipid environment provided by the gestating mother to the growing fetus, and the magnitude of changes in plasma lipidomic profiles from birth to early childhood. We identified the effects of adiposity on the circulating lipid levels in pregnant and non-pregnant women as well as offspring at birth and at 6 years of age. Additionally, the pediatric vs maternal overlap of the circulating lipid phenotype of obesity risk provides intergenerational insights and early opportunities to track and intervene the onset of metabolic adversities. Clinical trial registration This birth cohort is a prospective observational study, which was registered on 1 July 2010 under the identifier NCT01174875.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.