The use of biodegradable polymers in daily life is increasing to reduce environmental hazards. In line with this, the present study aimed to develop a fully biodegradable polymer composite that was environmentally friendly and exhibited promising mechanical and thermal properties. Bamboo powder (BP)-reinforced polycaprolactone (PCL) composites were prepared using the solvent casting method. The influence of BP content on the morphology, wettability, and mechanical and thermal properties of the neat matrix was evaluated. In addition, the degradation properties of the composites were analysed through soil burial and acidic degradation tests. It was revealed that BP contents had an evident influence on the properties of the composites. The increase in the BP content has significantly improved the tensile strength of the PCL matrix. A similar trend is observed for thermal stability. Scanning electron micrographs demonstrated uniform dispersion of the BP in the PCL matrix. The degradation tests revealed that the biocomposites with 40 wt·% of BP degraded by more than 20% within 4 weeks in the acidic degradation test and more than 5% in the soil burial degradation test. It was noticed that there was a considerable difference in the degradation between the PCL matrix and the biocomposites of PCL and BP. These results suggest that biodegradable composites could be a promising alternative material to the existing synthetic polymer composites.
In recent years, composites consisting of polymers and cellulosic materials have attracted increasing research attention. Polypropylene (PP) is among the most common polymer types found in excavated waste from landfills. Moreover, wood waste generated from wood products manufacturing such as sawdust (SD) offers a good potential for the fabrication of composite materials, and it is readily available in the environment. In this paper, wood polymer composites (WPC) consisting of recycled PP (rPP) and (SD) were prepared and characterised. A range of mechanical properties, including tensile strength, flexural properties, creep and hardness were studied, along with morphology, thermal properties, water degradation and contact angle. The results showed that the mechanical and thermal properties of rPP increased with an increase in 40 wt% of the SD content. Furthermore, the SD content significantly influenced the water uptake of the composites. Time–temperature superposition (TTS) was applied to predict the long-term mechanical performance from short-term accelerated creep tests at a range of elevated temperatures. The short-term creep test showed efficient homogeneity between the fillers and matrix with increasing temperature. The produced wood polymer composites displayed a comparable physical property to virgin polymer and wood and could potentially be used for various structural materials.
The depletion of natural resources due to the aggressive industrialization in the last decades has brought considerable attention to research aimed at developing green and sustainable products using eco-friendly materials. The purpose of the current study was to develop wood polymer composites (WPCs) using recycled plastic waste (RPW) generated from university laboratories and recycled wood waste (RWW) from construction and demolition (C&D) activities by melt-blending technique. The WPCs were characterised for their mechanical and thermal properties, as well as water uptake and morphology. The SEM micrograph indicated good interaction between RWW and RPW matrix. The mechanical strength of the WPCs was found to increase from 26.59 to 34.30 MPa, with an increase of the RWW content in the matrix. The thermal stability was higher in the composite with a higher percentage of RWW in the matrix. The wettability results indicated that the composite with a higher RWW (20%) had a higher water uptake. These results suggest that the produced WPCs can be a promising environmental-friendly material, while maintaining good mechanical, thermal, and wettability properties.
In recent years, finite element analysis (FEA) models of different porous scaffold shapes consisting of various materials have been developed to predict the mechanical behaviour of the scaffolds and to address the initial goals of 3D printing. Although mechanical properties of polymeric porous scaffolds are determined through FEA, studies on the polymer nanocomposite porous scaffolds are limited. In this paper, FEA with the integration of material designer and representative volume elements (RVE) was carried out on a 3D scaffold model to determine the mechanical properties of boron nitride nanotubes (BNNTs)-reinforced gelatin (G) and alginate (A) hydrogel. The maximum stress regions were predicted by FEA stress distribution. Furthermore, the analysed material model and the boundary conditions showed minor deviation (4%) compared to experimental results. It was noted that the stress regions are detected at the zone close to the pore areas. These results indicated that the model used in this work could be beneficial in FEA studies on 3D-printed porous structures for tissue engineering applications.
Wood is a cellulosic material that is most abundantly available in nature. Wood has been extensively used as reinforcement in polymer composite materials. Wood polymer composite (WPC) is an environmentally friendly and sustainable material exploited in building and construction within the marine, packaging, housewares, aerospace, and automotive industries. However, the precision of testing equipment for finding the properties of WPCs becomes less feasible compared to experimental analysis due to a high degree of differences in the measurement of properties such as stress, strain and deformation. Thus, evaluating the mechanical properties of WPCs using finite element analysis (FEA) can aid in overcoming the inadequacies in measuring physical properties prior to experimental analyses. Furthermore, the prediction of mechanical properties using simulation tools has evolved to analyze novel material performance under various conditions. The current study aimed to examine the mechanical properties of saw dust-reinforced recycled polypropylene (rPP) through experimentation and FEA. A model was developed using SolidWorks, and simulation was performed in ANSYS to predict the mechanical properties of the WPCs. To validate the obtained results, the simulated static tension test results were confirmed with experimental tension tests, and both assessments were well in accordance with each other. Using FEA to predict material properties could be a cost-effective technique in studying new materials under varied load conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.