We consider optimal/efficient power allocation policies in a single/multihop wireless network in the presence of hard end-to-end deadline delay constraints on the transmitted packets. Such constraints can be useful for real time voice and video. Power is consumed in only transmission of the data. We consider the case when the power used in transmission is a convex function of the data transmitted. We develop a computationally efficient online algorithm, which minimizes the average power for the single hop. We model this problem as dynamic program (DP) and obtain the optimal solution. Next, we generalize it to the multiuser, multihop scenario when there are multiple real time streams with different hard deadline constraints.
Abstract-We consider optimal/efficient power allocation policies in a single/multihop wireless network in the presence of hard end-to-end deadline delay constraints on the transmitted packets. Such constraints can be useful for real time voice and video. Power is consumed in only transmission of the data. We consider the case when the power used in transmission is a convex function of the data transmitted. We develop a computationally efficient online algorithm, which minimizes the average power for the single hop. We model this problem as dynamic program (DP) and obtain the optimal solution. Next, we generalize it to the multiuser, multihop scenario when there are multiple real time streams with different hard deadline constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.