The subcooled flow boiling is related to the operation of electronic devices, Hybrid electric vehicle (HEV) Battery module and small catalytic reactors. It is well known that the operational temperature must be maintained to avoid any malfunction of these heat dissipative devices. In this paper the forced convective and subcooled flow boiling heat transfer coefficients of water-ethanol mixture is determined numerically by Volume of fluid analysis (VOF). The interaction between liquid and local vapour is analysed by solving the bubble volume of fraction in the numerical study. Crank Nicolson implicit scheme is used for discretizing the scalar convection equation for bubble void fraction and transforming into algebraic equation. Thomas Algorithm is used to solve the algebraic equations of bubble void fraction. The corrector predictor equation method is used to solve for bubble void fraction when the value obtained is less than 0 or exceeds 1. The thermodynamic and Thermophysical properties are substituted in the x-momentum and energy equation to determine the values of pressure drop, velocity and temperature of the fluid. From the temperature values, the subcooled flow boiling heat transfer coefficient is obtained. It is found that the addition of ethanol to water decreases the forced convective and subcooled flow boiling heat transfer coefficient of the water-ethanol mixture. The numerically determined heat transfer coefficient of water ethanol mixture is compared with that of the experimental results. The average deviation between the experimentally determined and numerically determined subcooled flow boiling heat transfer coefficient of water ethanol-mixture is found to be 24.13%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.