Open-shell phenalenyl chemistry started more than half a century back, and the first solid-state phenalenyl radical was realized only 15 years ago highlighting the synthetic challenges associated in stabilizing carbon-based radical chemistry, though it has great promise as building blocks for molecular electronics and multifunctional materials. Alternatively, stable closed-shell phenalenyl has tremendous potential as it can be utilized to create an in situ open-shell state by external spin injection. In the present study, we have designed a closed-shell phenalenyl-based iron(III) complex, Fe(III)(PLY)3 (PLY-H = 9-hydroxyphenalenone) displaying an excellent electrocatalytic property as cathode material for one compartment membraneless H2O2 fuel cell. The power density output of Fe(III)(PLY)3 is nearly 15-fold higher than the structurally related model compound Fe(III)(acac)3 (acac = acetylacetonate) and nearly 140-fold higher than an earlier reported mononuclear Fe(III) complex, Fe(III)(Pc)Cl (Pc = pthalocyaninate), highlighting the role of switchable closed-shell phenalenyl moiety for electron-transfer process in designing electroactive materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.