We report that the thermally-induced Mott transition in vanadium sesquioxide shows criticalslowing-down and enhanced variance ('critical opalescence') of the order parameter fluctuations measured through low-frequency resistance-noise spectroscopy. Coupled with the observed increase of also the phase-ordering time, these features suggest that the strong abrupt transition is controlled by a critical-like singularity in the hysteretic metastable phase. The singularity is identified with the spinodal point and is a likely consequence of the strain-induced long-range-interaction.
Understanding the dynamics of phase-transitions, interpretations of their experimental observations and their agreement with theoretical predictions continue to be a long-standing research interest. Here, we present detailed phase-transition dynamics of rare earth nickelates associated with its first-order metal-insulator transition. The thermal hysteresis shows absence of training effect and defies the Preisach model. A large phase-coexistence in insulating state during cooling suggests kinetically arrested glassy dynamics of the phase-transition. Experimentally derived hysteresis scaling exponent is much larger than the mean-field predicted universal value of 2/3. In the phase-coexistence region, the quench and hold measurement depicts higher stability of the metallic state compare to that of the insulating one; highlighting the manifestation of phase-coexistence via asymmetric spinodal decomposition. All these observations for nickelates are in stark contrast to the phase-transition dynamics of canonically similar vanadates but are closer to those of glasses, alloys. A substantial disagreement between the experiment and theory emphasizes the necessity to incorporate system-dependent details for the accurate interpretation of the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.