Clustering emerged as powerful mechanism to analyze the massive data generated by modern applications; the main aim of it is to categorize the data into clusters where objects are grouped into the particular category. However, there are various challenges while clustering the big data recently. Deep Learning has been powerful paradigm for big data analysis, this requires huge number of samples for training the model, which is time consuming and expensive. This can be avoided though fuzzy approach. In this research work, we design and develop an Improvised Fuzzy C-Means (IFCM)which comprises the encoder decoder Convolutional Neural Network (CNN) model and Fuzzy C-means (FCM) technique to enhance the clustering mechanism. Encoder decoder based CNN is used for learning feature and faster computation. In general, FCM, we introduce a function which measure the distance between the cluster center and instance which helps in achieving the better clustering and later we introduce Optimized Encoder Decoder (OED) CNN model for improvising the performance and for faster computation. Further in order to evaluate the proposed mechanism, three distinctive data types namely Modified National Institute of Standards and Technology (MNIST), fashion MNIST and United States Postal Service (USPS) are used, also evaluation is carried out by considering the performance metric like Accuracy, Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI). Moreover, comparative analysis is carried out on each dataset and comparative analysis shows that IFCM outperforms the existing model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.