Body undulation used by snakes and the physical architecture of a snake body may offer significant benefits over typical legged or wheeled locomotion designs in certain types of scenarios. A large number of research groups have developed snake-inspired robots to exploit these benefits. The purpose of this paper is to report different types of snake-inspired robot designs and categorize them based on their main characteristics. For each category, we discuss their relative advantages and disadvantages. This paper will assist in familiarizing a newcomer to the field with the existing designs and their distinguishing features. We hope that by studying existing robots, future designers will be able to create new designs by adopting features from successful robots. The paper also summarizes the design challenges associated with the further advancement of the field and deploying snake-inspired robots in practice.
Shape similarity assessment is a fundamental geometric reasoning problem that finds application in several different product design and manufacturing applications. A computationally efficient way to assess shape similarity is to first abstract 3D object shapes into shape signatures and use shape signatures to perform similarity assessment. Several different types of shape signatures have been developed in the past. This paper provides a survey of existing algorithms for computing and comparing shape signatures. Our survey consists of a description of the desired properties of shape signatures, a scheme for classifying different types of shape signatures, and descriptions of representative algorithms for computing and comparing shape signatures. This survey concludes by identifying directions for future research.
Automated CAD model simplification plays an important role in effectively utilizing physicsbased simulation during the product realization process. Currently a rich body of literature exists that describe many successful techniques for fully-automatic or semi-automatic simplification of CAD models for a wide variety of applications. The purpose of this paper is to compile a list of the techniques that are relevant for physics-based simulations problems and to characterize them based on their attributes. We have classified them into the following four categories: techniques based on surface entity based operators, volume entity based operators, explicit feature based operators, and dimension reduction operators. This paper also presents the necessary background information in the CAD model representation to assist the new readers. We conclude the paper by outlining open research directions in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.