Tomato is the most popular and cultivated crop in the world. Nevertheless, the quality and quantity of tomato crops have been declining due to various diseases that afflict tomato crops. Hence, it becomes necessary to detect the disease early to prevent crop damage and increase the yield. The proposed model in this article predicts the infected tomato leaf images (9 classified diseases and also healthy class) obtained from the Plant Village dataset. In this model, Transfer learning was used to extract features from images by VGG16, yielding a high dimension of 25088 features. Overfitting is a commonly anticipated problem because of the higher dimensionality of data. To mitigate this problem, the authors have adopted a novel dimensional reduction-based technique: filter methods, feature extraction techniques like Principal Components Analysis (PCA), and the Boruta feature selection technique of wrapper methods. This adoption enables the proposed model to attain a significantly improved high accuracy of 95.68% and 95.79% in MLP and VGG16, respectively, by reducing its initial dimension on the tomato dataset containing 18160 images across 10 classes.
The multi-input with mixed data modality of the model is based on three folded structure. The first input model is structured by Convolution Network that accepts the images related to the house. The implementation of the network is miniVGGNet design. The network is tested among, which gives a better outcome. The output valued is concatenated eventually with numerical value entry of the same set which is trained and processed by multi-layer perceptron for review the house price of the building. The linear activation is helped to evaluate the predicted value of price after equal dimension merging of convolutional and multi-layer perceptron network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.