Biosynthesis of nanoparticles has gained great attention in making the process cost-effective and eco-friendly, but there are limited reports which describe the interdependency of physical parameters for tailoring the dimension and geometry of nanoparticles during biological synthesis. In the present study, gold nanoparticles (GNPs) of various shapes and sizes were obtained by modulating different physical parameters using Trichoderma viride filtrate. The particles were characterized on the basis of visual observation, dynamic light scattering, UV-visible spectroscopy, transmission electron microscopy, fourier transform infrared spectroscopy, and X ray diffraction. While the size varied from 2–500 nm, the shapes obtained were nanospheres, nanotriangles, nanopentagons, nanohexagons, and nanosheets. Changing the parameters such as pH, temperature, time, substrate, and culture filtrate concentration influenced the size and geometry of nanoparticles. Catalytic activity of the biosynthesized GNP was evaluated by UV-visible spectroscopy and confirmed by gas chromatography-mass spectrometric analysis for the conversion of 4-nitrophenol into 4-aminophenol which was strongly influenced by their structure and dimension. Common practices for biodegradation are traditional, expensive, require large amount of raw material, and time taking. Controlling shapes and sizes of nanoparticles could revolutionize the process of biodegradation that can remove all the hurdles in current scenario.
Trichoderma harzianum is an effective biocontrol agent against the devastating plant pathogen Rhizoctonia solani. Despite its wide application in agriculture, the mechanisms of biocontrol are not yet fully understood. Mycoparasitism and antibiosis are suggested, but may not be sole cause of disease reduction. In the present study, we investigated the role of oxidant-antioxidant metabolites in the root apoplast of sunflower challenged by R. solani in the presence/absence of T. harzianum NBRI-1055. Analysis of oxidative stress response revealed a reduction in hydroxyl radical concentration ( • OH; 3.6 times) at 9 days after pathogen inoculation (dapi), superoxide anion radical concentration (O 2 •− ; 4.1 times) at 8 dapi and hydrogen peroxide concentration (H 2 O 2 ; 2.7 times) levels at 7 dapi in plants treated with spent maize-cob formulation of T. harzianum NBRI-1055 (MCFT), as compared to pathogen-inoculated plants. The protection afforded by the biocontrol agent was associated with the accumulation of the ROS gene network: the catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and ascorbate peroxidase (APx), maximum activity of CAT (11.0 times) was observed at 8 dapi, SOD (7.0 times) at 7 dapi, GPx (5.4 times) and APx (8.1 times) at 7 dapi in MCFT-treated plants challenged with the pathogen. This was further supported by the inhibition of lipid and protein oxidation in Trichoderma-inoculated plants.MCFT stimulated the accumulation of secondary metabolites of phenolic nature that increased up to five-fold and also exhibited strong antioxidant activity at 8 dapi, eventually leading to the systemic accumulation of phytoalexins. These results suggest that T. harzianum-mediated biocontrol may be related to alleviating R. solani-induced oxidative stress.
Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
Endophytes have been explored and found to perform an important role in plant health. However, their effects on the host physiological function and disease management remain elusive. The present study aimed to assess the potential effects of endophytes, singly as well as in combination, in (L.) Dunal, on various physiological parameters and systemic defense mechanisms against Seeds primed with the endophytic bacteria and individually and in combination demonstrated an enhanced vigor index and germination rate. Interestingly, plants treated with the two-microbe combination showed the lowest plant mortality rate (28%) under stress. Physiological profiling of treated plants showed improved photosynthesis, respiration, transpiration, and stomatal conductance under pathogenic stress. Additionally, these endophytes not only augmented defense enzymes and antioxidant activity in treated plants but also enhanced the expression of salicylic acid- and jasmonic acid-responsive genes in the stressed plants. Reductions in reactive oxygen species (ROS) and reactive nitrogen species (RNS) along with enhanced callose deposition in host plant leaves corroborated well with the above findings. Altogether, the study provides novel insights into the underlying mechanisms behind the tripartite interaction of endophyte-- and underscores their ability to boost plant health under pathogen stress. is well known for producing several medicinally important secondary metabolites. These secondary metabolites are required by various pharmaceutical sectors to produce life-saving drugs. However, the cultivation of faces severe challenge from leaf spot disease caused by To keep pace with the rising demand for this plant and considering its capacity for cultivation under field conditions, the present study was undertaken to develop approaches to enhance production of through intervention using endophytes. Application of bacterial endophytes not only suppresses the pathogenicity of but also mitigates excessive ROS/RNS generation via enhanced physiological processes and antioxidant machinery. Expression profiling of plant defense-related genes further validates the efficacy of bacterial endophytes against leaf spot disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.