To develop an ideal blood clot imaging and targeting agent, a single-chain antibody (SCA) fragment based on a fibrin-specific monoclonal antibody, MH-1, was constructed and produced via secretion from Bacillus subtilis. Through a systematic study involving a series of B. subtilis strains, insufficient intracellular and extracytoplasmic molecular chaperones and high sensitivity to wall-bound protease (WprA) were believed to be the major factors that lead to poor production of MH-1 SCA. Intracellular and extracytoplasmic molecular chaperones apparently act in a sequential manner. The combination of enhanced coproduction of both molecular chaperones and wprA inactivation leads to the development of an engineered B. subtilis strain, WB800HM[pEPP]. This strain allows secretory production of MH-1 SCA at a level of 10 to 15 mg/liter. In contrast, with WB700N (a seven-extracellular-protease-deficient strain) as the host, no MH-1 SCA could be detected in both secreted and cellular fractions. Secreted MH-1 SCA from WB800HM[pMH1, pEPP] could be affinity purified using a protein L matrix. It retains comparable affinity and specificity as the parental MH-1 monoclonal antibody. This expression system can potentially be applied to produce other single-chain antibody fragments, especially those with folding and protease sensitivity problems.
The strong biotin-streptavidin interaction limits the application of streptavidin as a reversible affinity matrix for purification of biotinylated biomolecules. To address this concern, a series of single, double, and triple streptavidin muteins with different affinities to biotin were designed. The strategy involves mutating one to three strategically positioned residues (Ser-45, Thr-90, and Asp-128) that interact with biotin and other framework structure-maintaining residues of streptavidin. The muteins were produced in soluble forms via secretion from Bacillus subtilis. The impact of individual residues on the overall structure of streptavidin is reflected by the formation of monomeric streptavidin to different extents. Of the three targeted residues, Asp-128 has the most dramatic effect (Asp-128 > Thr-90 > Ser-45). Conversion of all three targeted residues to alanine results in a soluble biotin binding mutein that exists 100% in the monomeric state. Both wild-type and mutated (monomeric and tetrameric) streptavidin proteins were purified, and their kinetic parameters (on- and off-rates) were determined using a BIAcore biosensor with biotin-conjugated bovine serum albumin immobilized to the sensor chip. This series of muteins shows a wide spectrum of affinity toward biotin (K(d) from 10(-6) to 10(-11) m). Some of them have the potential to serve as reversible biotin binding agents.
Formation of inclusion bodies is a major limiting factor for secretory production of an antidigoxin single-chain antibody (SCA) fragment from Bacillus subtilis. To address this problem, three new strains with enhanced production of molecular chaperones were constructed. WB600BHM constitutively produces the major intracellular molecular chaperones in an appropriate ratio without any heat shock treatment. This strain reduced the formation of insoluble SCA by 45% and increased the secretory production yield by 60%. The second strain, WB600B[pEPP], overproduces an extracytoplasmic molecular chaperone, PrsA. An increase in the total yield of SCA was observed. The third strain, WB600BHM[pEPP], coproduces both intracellular and extracytoplasmic molecular chaperones. This led to a further reduction in inclusion body formation and a 2.5-fold increase in the secretory production yield. SCA fragments secreted by this strain were biologically active and showed affinity to digoxin comparable to the affinity of those secreted by strains without overproduction of molecular chaperones. Interestingly, accumulation of a pool of periplasmic SCA was observed in the PrsA-overproducing strains. This pool is suggested to represent the secreted folding intermediates in the process of achieving their final configuration.
To develop a fast-acting clot dissolving agent, a clottargeting domain derived from the Kringle-1 domain in human plasminogen was fused to the C-terminal end of staphylokinase with a linker sequence in between. Production of this fusion protein in Bacillus subtilis and Pichia pastoris was examined. The Kringle domain in the fusion protein produced from B. subtilis was improperly folded because of its complicated disulfidebond profile, whereas the staphylokinase domain produced from P. pastoris was only partially active because of an N-linked glycosylation. A change of the glycosylation residue, Thr-30, to alanine resulted in a non-glycosylated biologically active fusion. The resulting mutein, designated SAKM3-L-K1, was overproduced in P. pastoris. Each domain in SAKM3-L-K1 was functional, and this fusion showed fibrin binding ability by binding directly to plasmin-digested clots. In vitro fibrin clot lysis in a static environment and plasma clot lysis in a flowcell system demonstrated that the engineered fusion outperformed the non-fused staphylokinase. The time required for 50% clot lysis was reduced by 20 to 500% under different conditions. Faster clot lysis can potentially reduce the degree of damage to occluded heart tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.