The population would reach ten billion by 2050, and experts believe that the agricultural sector needs to boost production by 70% to satisfy the demand. Traditional farming practices rely on primitive technology that creates a yield gap with low productivity. A paradigm shift towards merging new technologies in the agriculture sector would enhance productivity, optimize cost, and encourage sustainable development. In this paper, we review the necessity for the fusion of the Fourth Industrial Revolution technological approach in the agricultural domain. We discuss the gap in supply chain management for the Industrial sector and Agricultural sector and identify the issues of vendor-specific production systems. We propose a multimodal communication model for the systematic integration of multi-vendor agricultural production systems. Our model utilizes the Data Distribution Service (DDS) middleware to enable communication between heterogeneous production systems to perform farming operations in a coordinated manner. Experimental work is conducted on a small-scale hydroponic farm to evaluate the system performance in terms of throughput, latency, and packet delivery ratio (PDR). The throughput for our proposed DDS system has significantly improved with the use of the BATCH QoS policy for payload size less than 1024 bytes. However, we incur an average latency of approximately 235 microseconds for any payload size. The value of PDR is 1 for any payload size ensuring our system to be reliable. The results suggest that our model can enable interoperability between multi-vendor production systems in real-time while incurring minimum latency.
Traffic management challenges in peak seasons for popular destinations such as Madinah city have accelerated the need for and introduction of autonomous vehicles and Vehicular ad hoc networks (VANETs) to assist in communication and alleviation of traffic congestions. The primary goal of this study is to evaluate the performance of communication routing protocols in VANETs between autonomous and human-driven vehicles in Madinah city in varying traffic conditions. A simulation of assorted traffic distributions and densities were modeled in an extracted map of Madinah city and then tested in two application scenarios with three ad hoc routing protocols using a combination of traffic and network simulation tools working in tandem. The results measured for the average trip time show that opting for a fully autonomous vehicle scenario reduces the trip time of vehicles by approximately 7.1% in high traffic densities and that the reactive ad hoc routing protocols induce the least delay for network packets to reach neighboring VANET vehicles. From these observations, it can be asserted that autonomous vehicles provide a significant reduction in travel time and that either of the two reactive ad hoc routing protocols could be implemented for the VANET implementation in Madinah city. Furthermore, we perform an ANOVA test to examine the effects of the factors that are considered in our study on the variation of the results.
Medium access control (MAC) protocols in ad hoc networks have evolved from single-channel independent transmission mechanisms to multi-channel concurrent mechanisms to efficiently manage the demands placed on modern networks. The primary aim of this study is to compare the performance of popular multi-channel MAC (MMAC) protocols under saturated network traffic conditions and propose improvements to the protocols under these conditions. A novel, dynamically adaptive MMAC protocol was devised to take advantage of the performance capabilities of the evaluated protocols in changing wireless ad hoc network conditions. A simulation of the familiar MAC protocols was developed based on a validated simulation of the IEEE 802.11 standard. Further, the behaviors and performances of these protocols are compared against the proposed MMAC protocols with a varying number of ad hoc stations and concurrent wireless channels in terms of throughput, Jain’s fairness index, and channel access delay. The results show that the proposed MMAC protocol, labeled E-SA-MMAC, outperforms the existing protocols in throughput by up to 11.9% under a constrained number of channels and in channel access delays by up to 18.3%. It can be asserted from these observations that the proposed approach provides performance benefits against its peers under saturated traffic conditions and other factors, such as the number of available wireless channels, and is suitable for dynamic ad hoc network deployments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.