Convolutional neural network architectures have become increasingly complex, which has improved the performance slowly on well-known benchmark datasets in the recent years. In this research, we have analyzed the true need for such complexity. We have introduced G-Net light, a lightweight modified GoogleNet with improved filter count per layer to reduce feature overlaps and complexity. Additionally, by limiting the amount of pooling layers in the proposed architecture, we have exploited the skip connections to minimize the spatial information loss. The investigations on the proposed architecture are evaluated on three retinal vessel segmentation publicly available datasets. The proposed G-Net light outperforms other vessel segmentation architectures by reducing the number of trainable parameters..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.