This paper is devoted to studying some applications of the Bochner-Kodaira-Morrey-Kohn identity. For this study, we define a condition which is called (Hq) condition which is related to the Levi form on the complex manifold. Under the (Hq) condition and combining with the basic Bochner-Kodaira-Morrey-Kohn identity, we study the L2 ∂ Cauchy problems on domains in ℂn, Kähler manifold and in projective space. Also, we study this problem on a piecewise smooth strongly pseudoconvex domain in a complex manifold. Furthermore, the weighted L2 ∂ Cauchy problem is studied under the same condition in a Kähler manifold with semi-positive holomorphic bisectional curvature. On the other hand, we study the global regularity and the L2 theory for the ∂-operator with mixed boundary conditions on an annulus domain in a Stein manifold between an inner domain which satisfy (Hn−q−1) and an outer domain which satisfy (Hq).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.