This review deals with the main mechanisms of action exerted by antagonistic bacteria, such as competition for space and nutrients, suppression via siderophores, hydrolytic enzymes, antibiosis, biofilm formation, and induction of plant resistance. These mechanisms inhibit phytopathogen growth that affects postharvest fruit since quality and safety parameters are influenced by the action of these microorganisms, which cause production losses in more than 50% of fruit tree species. The use of synthetic fungicide products has been the dominant control strategy for diseases caused by fungi. However, their excessive and inappropriate use in intensive agriculture has brought about problems that have led to environmental contamination, considerable residues in agricultural products, and phytopathogen resistance. Thus, there is a need to generate alternatives that are safe, ecological, and economically viable to face this problem. Phytopathogen inhibition in fruit utilizing antagonist microorganisms has been recognized as a type of biological control (BC), which could represent a viable and environmentally safe alternative to synthetic fungicides. Despite the ecological benefit that derives from the use of controllers and biological control agents (BCA) at a commercial level, their application and efficient use has been minimal at a global level.
Anthracnose, caused by Colletotrichum gloeosporioides, is one of the most important diseases in papaya fruit. Its control has been achieved with synthetic fungicides, but the application of marine bacteria and the sulphated polysaccharide ulvan (structural description: β[1,4]-D-GlcA-α[1,4]-L-Rha 3 sulfate, β[1,4]-L-IdoA-α[1,4]-L-Rha 3 sulfate, β[1,4]-D-Xyl-α[1,4]-L-Rha 3 sulfate, and β[1,4]-D-Xyl 2-sulfate-α[1,4]-L-Rha 3 sulfate) from Ulva sp. can be an alternative in the use of agrochemicals. Thus, the objective of this study was to assess the effect in vitro and in vivo of two marine bacteria, Stenotrophomonas rhizophila and Bacillus amyloliquefaciens, and ulvan in papaya fruit’s bio-protection against C. gloeosporioides. The capacity of marine bacteria to inhibit mycelial growth and phytopathogen spore germination in vitro through volatile organic compounds (VOCs) and carbohydrate competition was evaluated. Fruit was inoculated with bacteria, ulvan, and C. gloeosporioides and incubated at 25 °C and 90% of relative humidity (RH) for seven days. Disease incidence (%), lesion diameter (mm), and antioxidant defense enzyme activity (such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were quantified. In vitro, C. gloeosporioides was inhibited by S. rhizophila and B. amyloliquefaciens. In vivo, disease incidence and the lesion diameter of anthracnose on papaya fruit were significantly reduced by marine bacteria and ulvan. Antioxidant defense enzyme activity played an important role in fruit bio-protection against C. gloeosporioides. The application of marine bacteria and ulvan can be an alternative in the sustainable postharvest management of papaya.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.