Histological tissue examination has been a longstanding practice for cancer diagnosis where pathologists identify the presence of tumors on glass slides. Slides acquired from laboratory routine may contain unintentional artifacts due to complications in surgical resection. Blood and damaged tissue artifacts are two common problems associated with transurethral resection of the bladder tumor. Differences in histotechnical procedures among laboratories may also result in color variations and minor inconsistencies in outcome. A digitized version of a glass slide known as a whole slide image (WSI) holds enormous potential for automated diagnostics. The presence of irrelevant areas in a WSI undermines diagnostic value for pathologists as well as computational pathology (CPATH) systems. Therefore, automatic detection and exclusion of diagnostically irrelevant areas may lead to more reliable predictions. In this paper, we are detecting blood and damaged tissue against diagnostically relevant tissue. We gauge the effectiveness of transfer learning against training from scratch. Best models give 0.99 and 0.89 F1 scores for blood and damaged tissue detection. Since blood and damaged tissue have subtle color differences, we assess the impact of color processing methods on the binary classification performance of five well-known architectures. Finally, we remove the color to understand its importance against morphology on classification performance.
Bladder cancer patients' stratification into risk groups relies on grade, stage and clinical factors. For non-muscle invasive bladder cancer, T1 tumours that invade the subepithelial tissue are high-risk lesions with a high probability to progress into an aggressive muscle-invasive disease. Detecting invasive cancerous areas is the main factor for dictating the treatment strategy for the patient. However, defining invasion is often subject to intra/interobserver variability among pathologists, thus leading to over or undertreatment. Computer-aided diagnosis systems can help pathologists reduce overheads and erratic reproducibility. We propose a multi-scale model that detects invasive cancerous areas patterns across the whole slide image. The model extracts tiles of different tissue types at multiple magnification levels and processes them to predict invasive patterns based on local and regional information for accurate T1 staging. Our proposed method yields an F1 score of 71.9, in controlled settings 74.9, and without infiltration 90.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.