Periodate oxidation introduces aldehyde functionality to cellulose. The use of dialdehyde cellulose has been demonstrated for crosslinking and as a chemical intermediate towards functionalized cellulose. Commercially available cellulose nanocrystals (CNCs) typically carry a surface sulfate half-ester functionality, which results from their manufacture via sulfuric acid hydrolysis and subsequent esterification. The sulfate half-ester group is a bulky group carrying a net negative charge above pH 2 that modifies the colloidal and electro-chemical properties of the CNCs. Periodate oxidation is regioselective to the bond between carbons in positions 2 and 3 in the anhydroglucose unit while the sulfate half-ester groups are mostly considered to be located in carbon in position 6. This regioselectivity could be the reason why the role played by the sulfate half-ester group on modification by periodate oxidation has not previously been elucidated. Here, the influence of the sulfate half-ester on the oxidation of CNCs, which is shown to steer the oxidation kinetics and the properties of the resulting materials, is studied. Conventional physicochemical analysis of the oxidant consumption is accompanied by elemental analysis, Fourier-transform infrared, X-ray photoelectron and solid-state nuclear magnetic resonance spectroscopy, and wide-angle x-ray scattering analyses; the zeta potential is used to characterize the colloidal properties of the suspensions and atomic force microscopy for determining particle dimensions. The presence of the sulfate half-ester group decreases the rate of oxidation. However, the content of the sulfate half-ester groups decreases when degree of oxidation reaches approx. 50%. We demonstrate that the CNC surfaces are affected by the oxidation beyond the C2–C3 bond cleavage: insight into the kinetics of the oxidation process is a prerequisite for optimizing CNC oxidation.
Tissue mimicking phantom materials with thermal and dielectric equivalence are vital for the development of microwave diagnostics and treatment. The current phantoms representing fat tissue are challenged by mechanical integrity at relevant temperatures coupled with complex production protocols. We have employed two types of nanocellulose (cellulose nanocrystals and oxidized cellulose nanocrystals) as reinforcement in gelatin stabilized emulsions for mimicking fat tissue. The nanocellulose-gelatin stabilized emulsions were evaluated for their dielectric properties, the modulitemperature dependence using small deformation rheology, stress-strain behavior using large deformation, and their compliance to quality assurance guidelines for superficial hyperthermia. All emulsions had low permittivity and conductivity within the lower microwave frequency band, accompanied by fat equivalent thermal properties. Small deformation rheology showed reduced temperature dependence of the moduli upon addition of nanocellulose, independent of type. The cellulose nanocrystals gelatin reinforced emulsion complied with the quality assurance guidelines. Hence, we demonstrate that the addition of cellulose nanocrystals to gelatin stabilized emulsions has the potential to be used as fat phantoms for the development of microwave diagnostics and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.