Martín-Rodríguez, S, Loturco, I, Hunter, AM, Rodríguez-Ruiz, D, and Munguia-Izquierdo, D. Reliability and measurement error of tensiomyography to assess mechanical muscle function: A systematic review. J Strength Cond Res 31(12): 3524-3536, 2017-Interest in studying mechanical skeletal muscle function through tensiomyography (TMG) has increased in recent years. This systematic review aimed to (a) report the reliability and measurement error of all TMG parameters (i.e., maximum radial displacement of the muscle belly [Dm], contraction time [Tc], delay time [Td], half-relaxation time [½ Tr], and sustained contraction time [Ts]) and (b) to provide critical reflection on how to perform accurate and appropriate measurements for informing clinicians, exercise professionals, and researchers. A comprehensive literature search was performed of the Pubmed, Scopus, Science Direct, and Cochrane databases up to July 2017. Eight studies were included in this systematic review. Meta-analysis could not be performed because of the low quality of the evidence of some studies evaluated. Overall, the review of the 9 studies involving 158 participants revealed high relative reliability (intraclass correlation coefficient [ICC]) for Dm (0.91-0.99); moderate-to-high ICC for Ts (0.80-0.96), Tc (0.70-0.98), and ½ Tr (0.77-0.93); and low-to-high ICC for Td (0.60-0.98), independently of the evaluated muscles. In addition, absolute reliability (coefficient of variation [CV]) was low for all TMG parameters except for ½ Tr (CV = >20%), whereas measurement error indexes were high for this parameter. In conclusion, this study indicates that 3 of the TMG parameters (Dm, Td, and Tc) are highly reliable, whereas ½ Tr demonstrate insufficient reliability, and thus should not be used in future studies.
Gutiérrez-Vargas, R, Martín-Rodríguez, S, Sánchez-Ureña, B, Rodríguez-Montero, A, Salas-Cabrera, J, Gutiérrez-Vargas, JC, Simunic, B, and Rojas-Valverde, D. Biochemical and muscle mechanical postmarathon changes in hot and humid conditions. J Strength Cond Res XX(X): 000-000, 2018-The aim of this study was to compare biochemical changes and mechanical changes in the lower-limb muscles before and after a marathon race in hot and humid conditions. Eighteen healthy runners participated in a marathon at between 28 and 34° C and 81% humidity in Costa Rica. Serum magnesium (Mg), creatine phosphokinase (CPK), lactate dehydrogenase, and hematocrit (HCT) were measured before and after the marathon. Tensiomyography measurements from the rectus femoris (RF) and vastus medialis, muscle displacement (Dm), contraction time (Tc), and velocities of contraction to 10 and 90% of Dm (V10 and V90) were obtained before and after the marathon. Postrace measurements showed a 544% increase in CPK (t(17): -6.925, p < 0.01), a 16% increase in HCT (t(17): -7.466, p < 0.01), a 29% decrease in Mg (t(17): 3.91, p = 0.001), a 2% decrease in body mass (t(17): 4.162, p = 0.001), a 4% increase in Tc of the RF (t(17): -2.588, p = 0.019), and a 12% increase in Dm of the RF (t(17): -2.131, p < 0.048) compared with prerace measurements. No significant biochemical or mechanical differences were found between runners in terms of their finish times. These findings showed that completing a marathon in hot and humid conditions induced a significant reduction in lower-limb muscle stiffness, body mass, and Mg, and increased neuromuscular fatigue, CPK, and HCT, because of muscle damage and dehydration. Knowledge of the effects of heat and humidity may be of value for coaches and sports medicine practitioners in developing effective hydration and recovery protocols for marathon runners in these special conditions.
Flywheel iso-inertial training has been shown to positively affect muscular strength and sports performance (e.g. agility). However, implementing such eccentrically-biased training during a microcycle needs to be carefully planned due to its purported effects on the neuromuscular system that can last for hours/days post-exercise. This study aimed at using tensiomyography to verify the effects of different inertias during the hip extension exercise on the contractile function of biceps femoris and semitendinosus muscles of the dominant leg for up to 72 hours post-exercise. Thirty participants (24.4 ± 3.4 years) were divided into 0.075 or 0.1 kg·m2 inertia groups and a control group. Magnitude-based analysis was used for the comparisons. Several tensiomyography parameters were changed after both intensities of flywheel exercise (in most cases indicating a decrement in muscle stiffness), whereas most between-group differences suggested that in the semitendinosus muscle, the higher inertia (0.1 kg·m2) influenced the muscle stiffness parameters more (e.g. Dm = maximal radial displacement) while in the biceps femoris, the greater effect was caused by the lower inertia (0.075 kg·m2) (e.g. Tc = contraction time). Most changes in contractile properties of the investigated muscles occur within 24 hours post-exercise, but can persist for up to 72 hours. However, higher inertia (0.1 kg·m2) influenced the stiffness of the semitendinosus muscle more, while in the biceps femoris, the greater effect was caused by the lower inertia (0.075 kg·m2). These findings should be considered by practitioners when prescribing flywheel iso-inertial training.
The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (P I O 2 : 143 mmHg) and severe acute hypoxia (P I O 2 : 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser 40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser 349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O 2 -dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.