Growing evidence suggests that, among the different molecular/cellular pathophysiological mechanisms associated with cancer, there are 14 hallmarks that play a major role, including: (i) sustaining proliferative signaling, (ii) evading growth suppressors, (iii) activating invasion and metastasis, (iv) enabling replicative immortality, (v) inducing angiogenesis, (vi) resisting cell death, (vii) reprogramming energy metabolism, (viii) evading immune destruction, (ix) genome instability and mutations, (x) tumor-promoting inflammation, (xi) unlocking phenotypic plasticity, (xii) nonmutational epigenetic reprogramming, (xiii) polymorphic microbiomes, and (xiv) senescent cells. These hallmarks are also associated with the development of breast cancer, which represents the most prevalent tumor type in the world. The present narrative review aims to describe, for the first time, the effects of physical activity/exercise on these hallmarks. In summary, an active lifestyle, and particularly regular physical exercise, provides beneficial effects on all major hallmarks associated with breast cancer, and might therefore help to counteract the progression of the disease or its associated burden.
Neuromuscular electrical stimulation (NMES) in combination with blood flow restriction (BFR) enhances muscle hypertrophy and force-generating capacity. The present study aimed to investigate the acute effects of BFR and NMES, both in isolation and in combination, on muscle thickness (MT) and fatigue in the lower body of 20 young healthy subjects. Different stimuli were applied for 25 min, defined by the combination of BFR with high-and low-frequency NMES, and also isolated BFR or NMES. Changes in MT were then evaluated by ultrasound of the rectus femoris (RF) and vastus lateralis (VL) muscles at the end of the session (POST) and 15 min later (POST 15'). Lower limb fatigue was evaluated indirectly by strength performance. Results showed that RF MT was higher under the combined protocol (BFR + NMES) or isolated BFR than under NMESregardless of the frequencyboth at POST (p ≤ 0.018) and POST 15' (p ≤ 0.016). No significant changes in MT were observed under isolated NMES or BFR at POST 15' when compared with basal values (p ≥ 0.067). No significant differences were observed for VL MT between conditions (p = 0.322) or for fatigue between conditions (p ≥ 0.258). Our results indicate that a combination of BFR and NMES acutely increases MT in sedentary subjects. Also, although not significantly, BFR conditions had a greater tendency to induce fatigue than isolated NMES.
Highlights. The combination of blood flow restriction (BFR) and neuromuscular electrical stimulation (NMES) produces higher acute cell swelling than the isolated application of either NMES or BFR. . BFR in isolation appears to produce greater cell swelling than NMES, regardless of the frequency used. . BFR conditions had a greater tendency to induce fatigue than isolated NMES.
Background: Children and adolescents with disabilities engage in low levels of moderate-to-vigorous intensity physical activity (MVPA), which may create the onset of a sedentary lifestyle. In light of this, MVPA levels must be quantified with a valid tool such as accelerometry. This study aimed to: (i) analyze the accuracy of Evenson cut-points by estimating MVPA and sedentary behavior (SB) in children and adolescents with disabilities; (ii) define new equations to estimate energy expenditure (EE) with the GT3X+ accelerometer in this population and particularly in those with cerebral palsy (CP); (iii) define specific GT3X+ cut-points to estimate MVPA in those with CP. Methods: A total of 23 children and adolescents with disabilities (10 ± 3 years; 44%females) participated in the study. GT3X+-counts and oxygen uptake (VO2) were measured in four laboratory walking conditions. Results: (i) Evenson cut-points were accurate; (ii) new equations were defined to effectively predict EE; (iii) specific GT3X+ cut-points (VM ≥ 702 counts·min−1; Y-Axis ≥3 60 counts·min−1) were defined for estimating MVPA levels in children and adolescents with CP. Conclusions: The use of specific cut-points for ActiGraph GT3X+ seems to be accurate to estimate MVPA levels in children and adolescents with disabilities and, particularly, in those with CP, at least in laboratory conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.