OBJECTIVE To assess the ability to regenerate an equine meniscus by use of a collagen repair patch (scaffold) seeded with mesenchymal stem cells (MSCs) derived from bone marrow (BM) or adipose tissue (AT). SAMPLE 6 female Hispano-Breton horses between 4 and 7 years of age; MSCs from BM and AT were obtained for the in vitro experiment, and the horses were subsequently used for the in vivo experiment. PROCEDURES Similarities and differences between MSCs derived from BM or AT were investigated in vitro by use of cell culture. In vivo assessment involved use of a meniscus defect and implantation on a scaffold. Horses were allocated into 2 groups. In one group, defects in the medial meniscus were treated with MSCs derived from BM, whereas in the other group, defects were treated with MSCs derived from AT. Defects were created in the contralateral stifle joint but were not treated (control samples). RESULTS Both types of MSCs had universal stem cell characteristics. For in vivo testing, at 12 months after treatment, treated defects were regenerated with fibrocartilaginous tissue, whereas untreated defects were partially repaired or not repaired. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MSCs derived from AT could be a good alternative to MSCs derived from BM for use in regenerative treatments. Results also were promising for a stem cell-based implant for use in regeneration in meniscal lesions. IMPACT FOR HUMAN MEDICINE Because of similarities in joint disease between horses and humans, these results could have applications in humans.
Adipose-derived mesenchymal stromal cells are promising as a regenerative therapy tool for defective tissues in mesenchymal lineage, including fat, bone, cartilage, and blood vessels. In potential future clinical applications, adipose-derived stem cell cryopreservation is an essential fundamental technology. The aim of this study is to define an adequate protocol for the cryopreservation of adipose-derived mesenchymal stromal cells, by comparing various protocols so as to determine the effects of cryopreservation on viability and chondrogenic differentiation potential of adipose-derived stem cells upon freeze-thawing of AT-MSCs colonies cryopreserved with standard and modified protocols, using flow cytometry and confocal microscopy. The study concludes that adipose-derived mesenchymal stromal cells could be long-term cryopreserved without any loss of their proliferative or differentiation potential.
OBJECTIVE
To characterize the ultrastructure of mesenchymal stem cells (MSCs) that were harvested from the adipose tissue (AT-MSCs) and bone marrow (BMMSCs) of horses and transfected with green fluorescent protein.
SAMPLE
MSCs from adipose tissue and bone marrow of 6 adult female Hispano-Bretón horses.
PROCEDURES
Harvested equine MSCs were cultivated and transfected with green fluores-cent protein, and the immunophenotypes of the MSCs were characterized by use of anti-CD90 and anti-CD105 monoclonal antibodies. When stable transfection of MSCs was achieved, the morphological and ultrastructural characteristics of transfected and nontransfected AT-MSCs and BM-MSCs were compared with electron microscopy.
RESULTS
The protocols for transfection and subsequent isolation of transfected cells with use of G418 were suitable for obtaining transfected MSCs. Transfection efficiency was 5% in AT-MSCs and 4% in BM-MSCs. Characterization of transfected and nontransfected MSCs revealed that they share immunocytochemical and morphological profiles. Expression of CD90 was significantly higher for transfected versus nontransfected AT-MSCs (97% vs 92%). Expression of CD105 was significantly lower for transfected versus nontransfected BM-MSCs (85% vs 94%). Transfected BM-MSCs had differences in organelles, compared with the other cell types, specifically including most commonly the rough endoplasmic reticulum with dilated cisternae and mitochondria.
CONCLUSION AND CLINICAL RELEVANCE
These findings contribute to the knowledge base of the characteristics of equine AT-MSCs and BM-MSCs and of transfected versus nontransfected equine MSCs. The data provided a valuable starting point for researchers wishing to further study the morphological characteristics of equine MSCs. (Am J Vet Res 2021;82:770–776)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.