Cry1Ac protoxin has potent mucosal and systemic adjuvant effects on antibody responses to proteins or polysaccharides. In this work, we examined whether Cry1Ac increased protective immunity against fatal Naegleria fowleri infection in mice, which resembles human primary amoebic meningoencephalitis. Higher immunoglobulin G (IgG) than IgA anti-N. fowleri responses were elicited in the serum and tracheopulmonary fluids of mice immunized by the intranasal or intraperitoneal route with N. fowleri lysates either alone or with Cry1Ac or cholera toxin. Superior protection against a lethal challenge with 5 ؋ 10 4 live N. fowleri trophozoites was achieved for immunization by the intranasal route. Intranasal immunization of N. fowleri lysates coadministered with Cry1Ac increased survival to 100%; interestingly, immunization with Cry1Ac alone conferred similar protection to that achieved with amoebal lysates alone (60%). When mice intranasally immunized with Cry1Ac plus lysates were challenged with amoebae, both IgG and IgA mucosal responses were rapidly increased, but only the increased IgG response persisted until day 60 in surviving mice. The brief rise in the level of specific mucosal IgA does not exclude the role that this isotype may play in the early defense against this parasite, since higher IgA responses were detected in nasal fluids of mice intranasally immunized with lysates plus either Cry1Ac or cholera toxin, which, indeed, were the treatments that provided the major protection levels. In contrast, serum antibody responses do not seem to be related to the protection level achieved. Both acquired and innate immune systems seem to play a role in host defense against N. fowleri infection, but further studies are required to elucidate the mechanisms involved in protective effects conferred by Cry1Ac, which may be a valuable tool to improve mucosal vaccines.
The aim of this study was to assess the effects of feeding Atriplex halimus (AH) silage treated with two developed enzyme cocktails to sheep on feed intake, nutrient digestibility and ruminal fermentation. The AH silage was treated without or with 2 L of ZAD1(®) or ZAD2(®) /1000 kg with 5% molasses and ensiled for 30 days. Barley grain (300 g/head/day) was fed as an energy supplement once daily at 10.00 hours and AH silage with or without enzyme treatment was offered ad libitum to animals twice daily at 09.00 and 16.00 hours. Sheep were fed on four experimental forage diets comprised of AH silage and barley (D1), AH silage treated with ZAD1(®) and barley (D2), AH silage treated with ZAD2(®) and barley (D3) and AH silage treated with a combination of ZAD1(®) and ZAD2(®) (1:1) and barley (D4). Ensiling AH with enzymes reduced its contents of neutral detergent fiber and acid detergent fiber. The dry matter intake of AH of D2, D3 and D4 decreased (P < 0.001) as compared to D1. However, enzyme-treated diets had greater total digestible nutrients intake (P < 0.001) as compared to D1. The nutrients digestibility for D2, D3 and D4 were higher than those for D1 (P < 0.001), and were higher for D3 as compared to both D2 and D4. Sheep fed on D3 had highest (P < 0.001) ruminal total volatile fatty acids concentration, ammonia nitrogen concentration and microbial protein yield. It could be concluded that AH silage treated with ZAD1(®) or ZAD2(®) improved digestibility and rumen fermentation in sheep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.