Organic LEDs promise highly efficient lighting and display technologies. We introduce a new class of linear donor-bridge-acceptor light-emitting molecules, which enable solution-processed LEDs with near-100% internal quantum efficiency at high brightness. Key to this performance is their rapid and efficient utilization of triplet states. Using time-resolved spectroscopy, we establish that luminescence via triplets occurs within 350 ns at ambient temperature, after reverse intersystem crossing to singlets. We find that molecular geometries exist at which the singlet-triplet energy gap (exchange energy) is close to zero, such that rapid interconversion is possible. Calculations indicate that exchange energy is tuned by relative rotation of donor and acceptor moieties about the bridge. Unlike other low exchange energy systems, substantial oscillator strength is sustained at the singlet-triplet degeneracy point
Harnessing the near-infrared
(NIR) region of the electromagnetic
spectrum is exceedingly important for photovoltaics, telecommunications,
and the biomedical sciences. While thermally activated delayed fluorescent
(TADF) materials have attracted much interest due to their intense
luminescence and narrow exchange energies (ΔEST), they are still greatly inferior to conventional fluorescent
dyes in the NIR, which precludes their application. This is because
securing a sufficiently strong donor–acceptor (D–A)
interaction for NIR emission alongside the narrow ΔEST required for TADF is highly challenging. Here, we demonstrate
that by abandoning the common polydonor model in favor of a D–A
dyad structure, a sufficiently strong D–A interaction can be
obtained to realize a TADF emitter capable of photoluminescence (PL)
close to 1000 nm. Electroluminescence (EL) at a peak wavelength of
904 nm is also reported. This strategy is both conceptually and synthetically
simple and offers a new approach to the development of future NIR
TADF materials.
Multiple donor–acceptor‐type carbazole–benzonitrile derivatives that exhibit thermally activated delayed fluorescence (TADF) are the state of the art in efficiency and stability in sky‐blue organic light‐emitting diodes. However, such a motif still suffers from low reverse intersystem crossing rates (kRISC) with emission peaks <470 nm. Here, a weak acceptor of cyanophenyl is adopted to replace the stronger cyano one to construct blue emitters with multiple donors and acceptors. Both linear donor–π–donor and acceptor–π–acceptor structures are observed to facilitate delocalized excited states for enhanced mixing between charge‐transfer and locally excited states. Consequently, a high kRISC of 2.36 × 106 s−1 with an emission peak of 456 nm and a maximum external quantum efficiency of 22.8% is achieved. When utilizing this material to sensitize a blue multiple‐resonance TADF emitter, the corresponding device simultaneously realizes a maximum external quantum efficiency of 32.5%, CIEy ≈ 0.12, a full width at half maximum of 29 nm, and a T80 (time to 80% of the initial luminance) of > 60 h at an initial luminance of 1000 cd m−2.
Conformationally flexible “Carbene–Metal–Amide” (CMA) complexes of copper and gold show photoemissions across the visible spectrum, including mechanochromic behavior which led to the first CMA-based white light-emitting OLED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.