In this study, we analyzed the microbial composition of the rumen contents of cattle from Kazakhstan. Specifically, samples of the liquid and solid fractions of the rumen were collected to determine the quantitative and qualitative composition of methanogenic archaea. Cattle were six steers receiving hay-concentrate feeding. Methane emission was determined by repeated measurements for each animal. Rumen samples were then taken from fistulas and analyzed using 16S metabarcoding via Next-Generation Sequencing (NGS). The difference between the rumen fractions was investigated, resulting in differential distribution of the families Streptococccaceae, Lactobacillaceae, Desulfobulbaceae, and Succinivibrionaceae, which were more abundant in the liquid fraction, while Thalassospiraceae showed a higher presence in the solid fraction. These differences can be explained by the fact that fibrolytic bacteria are associated with the solid fraction compared to the liquid. A relationship between methane emission and methanogenic microbiota was also observed. Steers producing more methane showed microbiota richer in methanogens; specifically, most Mathanobacteriaceae resided in the liquid fraction and solid fraction of animals 1 and 6, respectively. The same animals carried most of the Methanobrevibacter and Methanosphaera genera. On the contrary, animals 2, 3, and 5 hosted a lower amount of methanogens, which also agreed with the data on methane emissions. In conclusion, this study demonstrated a relationship between methane emission and the content of methanogenic archaea in different rumen fractions collected from cattle in Kazakhstan. As a result of the studies, it was found that the solid fraction of the rumen contained more genera of methanogens than the liquid fraction of the rumen. These results prove that taking rumen contents through a fistula is more useful than taking it through a probe. The presented data may be of interest to scientists from all over the world engaged in similar research in a comparative aspect.
In Kazakhstan, barley (Hordeum vulgare L.) is the second most important cereal crop after wheat, with an annual production of approximately 1.9 million tons. The study aimed to characterize Bipolaris sorokiniana isolates obtained from barley fields surveyed. A total of 21 diseased leaves showing spot blotch symptoms were collected from experimental plots located close to the Kazakh Research Institute of Agriculture and Crop Production, where the spring barley Arna cultivar was planted in June 2020. The overall strategy for control of spring barley blotch in the Almaty region of Kazakhstan should include the determination of the aggressiveness of the pathogen isolates to better understand the biology of the diseases and ultimately proper control strategy. Pathogenicity of B. sorokiniana isolates was made on barley seedlings in vitro. Inoculated seedlings showed clear symptoms of B. sorokiniana, and therefore, Koch’s postulates were fulfilled by reisolating the pathogen from artificially inoculated seedlings and identifying it based on standard morphology criteria. Further investigation is needed to understand the impact of B. sorokiniana on barley production in Kazakhstan.
Methane (CH4) is an important greenhouse gas (GHG). Enteric methane emissions from farmed ruminant livestock account for approximately 15% of global GHG emissions, with approximately 44% of livestock emissions in the form of methane. The purpose of the research is to study the influence of feeding types and regional characteristics of Kazakhstan on the microbiota of feces and the number of methane-forming archaea of beef and meat-and-dairy cattle productivity. For this purpose, fecal samples were taken rectally from 37 cattle heads from four regions of Kazakhstan (Western, Southern, Northern and Southeast). The taxonomic composition of the community in all samples was determined by 16S metabarcoding; additionally alpha and beta diversities were calculated. The dominant phyla were: Firmicutes (57.30%), Bacteroidetes (17.00%), Verrucomicrobia (6.88%), Euryarchaeota (6.49%), Actinobacteria (4.77%) and Patescibacteria (3.38%). Significant differences with regard to methanogens bacteria were found: Euryarchaeota were less present in animals from Western Kazakhstan (2.40%), while Methanobacteriales and Methanobrevibacter were prevalent in Southeast, and less abundant in Western region. Western Kazakhstan differs from the other regions likely because animals are mainly grazed in the pasture. Thus, grazing animals has an impact on their microbiota thus leading to a decrease in methane emissions.
Засоление почв является серьезной проблемой Республики Казахстан. Один из путей повышения толерантности сельскохозяйственных культур к солевому стрессу – использование сообществ эндофитных микроорганизмов, повышающих устойчивость растений к различным повреждающим воздействиям. В данной работе показано влияние эндофитов растений, произрастающих в засушливых условиях, на способность проростков пшеницы противостоять солевому стрессу. Наилучшие результаты на синтетической среде показала ассоциация из растения Erigeron canadensis в сочетании с эндофитным актиномицетом пшеницы, отнесенным к виду Streptomyces curacoi. Влияние предварительной адаптации эндофитных микроорганизмов к хлориду натрия на устойчивость растения-хозяина к засолению было показано нами впервые. Soil salinization is a serious problem in the Republic of Kazakhstan. One of the ways to increase the tolerance of agricultural crops to salt stress is the use of communities of endophytic microorganisms, which increase the resistance of plants to various damaging effects. This work shows the influence of endophytes of plants growing in arid conditions on the ability of wheat seedlings to withstand salt stress. The best results on a synthetic medium were shown by an association from the plant Erigeron canadensis in combination with an endophytic wheat actinomycete assigned to the species Streptomyces curacoi. The influence of the preliminary adaptation of endophytic microorganisms to sodium chloride on the resistance of the host plant to salinity was shown by us for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.