Hydrogen absorbing alloys have attracted great attention because they are a safe and efficient media for transporting hydrogen energy. AB, AB2, AB5, and A2B-type hydrogen storage compounds and related substituted multi-component alloys have been proposed. In general, titanium-based alloys are among the most promising materials for hydrogen storage. Among the various available types of metal hydrides, AB2 type Ti-Cr-based alloys are the most promising candidates. In particular, there have been many methods for improving the hydrogen sorption properties. One of them is to prepare hydrogen absorbing alloys by mechanical alloying (MA). MA also enables synthesizing various non-equilibrium alloys and has been widely applied to modify properties of hydrogen storage alloys. Thus, MA is possibly the best way for mechanical composition control and mass production of various hydrogen storage alloys.
The energy transition is driving governments and industries to adopt various measures to reduce their climate impacts while maintaining the stability of their economy. Hydrogen technologies are one of the central topics in the energy transition. Different nations have different stances on it. Some governments see hydrogen as a decarbonization tool or part of their energy security strategy, while some others see it as a potential export commodity. While identifying priorities for the future, Kazakhstan should clearly define the role of hydrogen in the country’s long-term energy and decarbonization strategy. This work presents the first country-scale assessment of hydrogen technologies in Kazakhstan by focusing on policy, technology and economy aspects. A preliminary analysis has shown that Kazakhstan should approach hydrogen mainly as a part of its long-term decarbonization strategy. While coping with the financial risks of launching a hydrogen economy, the country can benefit from the export potential of low-carbon hydrogen in the near term. The export potential of low-carbon hydrogen in Kazakhstan is justified by its proximity to the largest hydrogen markets, huge resource base, and potentially low cost of production (in the case of blue hydrogen). Technology options for hydrogen transportation and storage for Kazakhstan are discussed in our work. The paper also identifies target hydrogen utilization areas in emission sectors regulated by Kazakhstan’s Emissions Trading System.
The challenge of meeting ever-pressing energy demand and reducing GHG emissions presents a significant challenge. One of the recent trends in the energy transition is hydrogen, which is experiencing unseen support from various stakeholders. Hydrogen roadmaps and net-zero strategies announced by governments and companies indicate that demand for low-carbon hydrogen will increase significantly. Therefore, it is essential to establish a reliable supply of low-carbon hydrogen. In our previous work, we have shown that Kazakhstan is located between the two largest hydrogen markets - China and Europe. Natural gas can be a feedstock material for low-carbon hydrogen, which is also known as blue hydrogen. Kazakhstan holds the 16th largest natural gas reserves in the world. Nevertheless, finding feedstock natural gas for hydrogen in Kazakhstan can be challenging. In 2020, the gross natural gas production in Kazakhstan reached 55.1 bcm of natural gas of which 34.8 bcm and 20.3 bcm are commercial and reinjected volumes, respectively. Commercial volumes are tightly used for rising domestic market and export. Reinjection volumes are also tightly used to maintain the production of oil in the largest hydrogen reservoirs of the country - Tengiz, Kashagan and Karachaganak. In our work, we propose an approach to use reinjected gas volumes for large-scale hydrogen production while keeping the oil production targets in the largest fields as before. CO2 emissions resulting from the hydrogen production would be used to replace currently reinjected natural gas in maintaining reservoir pressure. CO2 can decrease the viscosity of the reservoir fluid, thus enhancing oil recovery (EOR). This work presents the viability of the concept in the example of the Kashagan field by showing the material balance of both surface and subsurface processes. Several development scenarios were which also involved coproduction of elemental sulfur and methanol. Blue hydrogen production was modeled in Aspen Hysys v12.1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.