The first and family names of the authors were transposed in the original article. The correct names are given here. We apologise to the authors for this error.
Abstract. This work is focused on the application of a modelling system to simulate 3-D interaction between the Curonian Lagoon and the Baltic Sea coastal waters and to reflect spatiotemporal dynamics of marine waters in the Curonian Lagoon. The model system is based on the finite element programme package SHYFEM which can be used to resolve the hydrodynamic equations in lagoons, coastal seas, estuaries and lakes. The results of a one year (2009) 3-D model simulation with real weather and hydrological forcing show that the saline water intrusions from the sea through Klaipėda Strait are gradually decreasing with distance from the sea and become negligible (average annual salinity about 0.5 ‰) at a distance of about 20 km to the south of Kiaulės Nugara island. Analyses of the simulation results also show this area to be highly heterogeneous according to the vertical salinity distribution. While in the deeper Klaipėda Strait (harbour waterway) differences in average salinity between near bottom and surface layers varies in the range 2-2.5 ‰, in the rest of the Curonian Lagoon it is less than 0.5 ‰. The exchange flow showed vertical structure, but was horizontally uniform with the presence of a two-directional flow that from time to time changes to either saline water one-directional flow to the Curonian Lagoon or fresh water one-directional flow to the sea. Two-directional flow duration decreases with a distance from sea entrance in Klaipėda Strait from around 180 days yr −1 close to the sea entrance to 50 days yr −1 just behind Kiaulės Nugara island. One-directional outflow duration is increasing with a distance from the sea entrance from 100 to 225 days yr −1 . One-directional inflow duration occurs in the range of 70-100 days yr −1 . The analysis of the ratio of buoyancy layer thickness to water depth (h b /H ) and the Wedderburn number identified the main importance of wind action on the flow structure. Strong winds from the North and NW determine a barotropic inflow which is mostly responsible for the salt water intrusion into the Curonian Lagoon. Absence of wind or cross-strait wind regimes allows the maintenance of a two-layer flow typical of estuarine dynamics.
The aim of this study was to delineate the spatial zonation of the Curonian Lagoon based on the hydraulic regime and the sediment characteristics. A finite element hydrodynamic model has been applied to the Curonian Lagoon to simulate the circulation patterns for three years. With the help of a transport diffusion model the salinity distribution and the residence times of the Curonian Lagoon have been investigated when forced by river runoff and by wind. The finite element method permitted to follow the details of bathymetry and morphology of the lagoon, describing the areas of special interest with higher resolution. The hydrodynamic model has been validated using in situ water level and salinity measurements. A statistical GIS analysis of the bottom sediment characteristics and the modeled residence times and salinity distribution led to a synthetic hydraulic regime-based zonation scheme.The derived classification scheme is of crucial value for understanding the renewal capacity and biota distribution patterns in the lagoon.
This paper presents the results of integration of the environmental, economic and social data into comprehensive spatial plan of Lithuania. The main driving forces for the economic developments at sea are offshore wind energy growth and demand for exploration and exploitation of potential oil deposits. The developed spatial plan is a practical step towards implementation of the strategy for the Baltic Sea region and particularly focused on proper management of the marine resources. The concept of location of existing and future marine activities along with regulatory framework was created. The developed spatial solutions create the pre-conditions for future development at the sea and at the same time highlights the demand for new quality of the scientific research while investigating the marine resources and evaluating the economic effect as well as environmental consequences. Keywords • maritime spatial planning • sustainable use • marine resourcesRosita Milerienė (rosita@corpi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.