Coral communities were examined from highly turbid near-shore marginal reefs of Abrolhos (Brazil) to test a paradigm previously developed from observations in clear water reefs; specifically, that coral photobiological properties follow a highly conserved linear relationship with optical depth (f) via preferential 'non-photochemical' over 'photochemical' dissipation of absorbed light energy. PAM flourometry in situ was used to examine the photobiology of the most dominant coral species throughout the platform surfaces and bases of Abrolhos' characteristic 'chapeirões' reef framework; however, none of the species consistently adhered to the 'clear water paradigm'. PAM measurements further demonstrated that species conformed to two different strategies of non-photochemical energy dissipation: transient but relatively rapid for the two closely related endemic species (Mussismilia braziliensis and Mussismilia harttii) as opposed to more persistent for Montastrea cavernosa, Porites astreoides and Siderastrea stellata. Further experiments demonstrated that tolerance to anomalous stress amongst species did not correspond with the non-photochemical energy dissipation strategy present but was consistent with the relative dominance of species within the chapeirões coral communities.
Summary Colonizing populations of nitrogen-fixing bacteria were measured in various decay stages of Douglas-fir logs infested with Fomitopsis pinicola. Numbers of nitrogen-fixers and N-fixation rates in the wood increased as decay progressed. These increase in bacterial populations and N-fixing activity appeared related to increases in wood moisture content. Bacteria resembling Clostridium pasteurianum, CIostridium butyricum, and Klebsiella/Enterobacter spp. were isolated from the various wood decay stages.
Organic matter is an important source of information on the transport and consolidation processes of sediments. In this study, the isotopes of carbon and nitrogen (δ 13 C and δ 15 N), total organic carbon (TOC), total nitrogen, carbon/nitrogen (C/N) ratio, and 13 C-NMR were utilized to understand the origin and behavior of organic material in the Abrolhos region. It were analyzed nine sediment cores taken from a mangrove, a channel between the mainland and the coral reefs. The average value of the C/N ratio in the mangrove was 18, which characterizes purely terrigenous areas. For the reefs, the average value of the C/N ratio was 8,which is characteristic of marine and coastal regions. For the sediment cores taken from the channel, the average value of the C/N ratio was 10, a typical value of areas under the influence of mangroves. The mean values of δ 13 C were -26.9‰ for the mangrove, -20.7‰ for the channel region, and -18.2‰ for the reefs. This variation is associated with the main source of organic matter, which in the mangrove is derived from vascular plants (mainly C3 metabolism) and for the reefs is derived from phytoplankton. The 13 C-NMR results corroborate the isotopic and elemental analyses. The analyses of these cores indicate that the anthropogenic influence on the coast did not significantly alter the composition of the material that has been deposited in about the last 80 years in the region of study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.