This study evaluated the effects of chemical and biological preservatives and ensiling stage on spoilage, ruminal in vitro fermentation, and methane production of wet brewer’s grain (WBG) silage. Treatments (TRT) were sodium lignosulfonate at 10 g/kg fresh WBG (NaL1) and 20 g/kg (NaL2), propionic acid at 5 g/kg fresh WBG (PRP, 99%), a combination inoculant (INO; Lactococcus lactis and Lactobacillus buchneri each at 4.9 log cfu/fresh WBG g), and untreated WBG (CON). Fresh WBG was treated and then ensiled for 60 d, after which mini silos were opened and aerobically exposed (AES) for 10 d. Data were analyzed as a RCBD (5 blocks) with a 5 TRT × 3 stages (STG; Fresh, Ensiled, and AES) factorial arrangement. Results showed that Ensiled PRP-treated WBG markedly preserved more water-soluble carbohydrates and starch than all other Ensiled TRT (P<0.001). Dry matter losses of Ensiled PRP-treated WBG were 48% lower than all other Ensiled TRT (P=0.009) but were not different than CON in AES (P=0.350). Due to its greater concentration of digestible nutrients, PRP-treated AES was less aerobically stable than CON (P=0.03). Preservation was not improved by INO, NaL1 or NaL2 but the latter prevented the increase of neutral detergent fiber across STG (P=0.392). Apparent in vitro DM digestibility (IVDMD) decreased only in Ensiled CON, INO and NaL1 relative to Fresh WBG and AES NaL2 had greater IVDMD than all other AES TRT (P≤0.032). In vitro ruminal fermentation of Fresh WBG resulted in a greater methane concentration and yield than the other STG (P<0.033). In conclusion, PRP was the most effective at preserving WBG during ensiling but failed to improve aerobic stability under the conditions tested.
Our objective was to evaluate the effects of application rate (AR) of sodium lignosulfonate and propionic acid on high moisture alfalfa hay spoilage during storage. Treatments (TRT) were sodium lignosulfonate (NaL) and Propionic Acid (PRP), which were applied at four AR: 0 (CON), 0.25, 0.5 and 1% (w/w fresh basis) to 20% bloom alfalfa hay (second cut) at 68.5% DM and packed into mini bales (10.3x10.8x13cm; 346kg fresh/m3). The treated bales were stored for 33 days in open-top insulation boxes in a room kept at 22°C. Data were analyzed as a randomized complete block design (5 blocks) with a 2 (TRT) x 4 (AR) factorial arrangement, and differences were declared at P ≤ 0.05. At day 0, no differences were observed for DM (68.5 ± 0.61 %), CP (23.2 ± 0.31% DM), and NDF (42.6 ± 0.66% DM), but NaL had more sugars than PRP (0.99 vs. 0.87 ± 0.66% DM) and PRP at 1% reduced mold counts vs. CON (4.71 vs. 4.97 ± 0.05 log cfu/fresh g). At day 33, DM losses were decreased by PRP at 0.5 and 1% (0.9), relative to CON (6.92) and to NaL (6.63 ± 1.13%). Both TRT decreased NDF at 0.25% (46.3) and furthermore at 1% (44.2) relative to CON (49.4), but overall PRP had lower NDF (45.2) than NaL (47.2± 0.81% DM). No differences were observed for sugars and CP. Visual moldiness (0–10) and mold counts were also decreased by PRP at 0.5% (2.4 and 5.30) and 1% (0 and 2.7) relative to CON (6.0 and 7.13) and NaL (5.85 ± 0.67 and 7.21 ± 0.31 log cfu/fresh g, respectively). In conclusion, NaL failed to prevent spoilage of high moisture hay while PRP was effective at doses >0.5%.
Our objectives were to compare the antifungal activity of 5 lignosulfonates, and 2 chitosans against fungi isolated from spoiled hay, and assess the effects of an optimized lignosulfonate, chitosan, and propionic acid (PRP) on high-moisture alfalfa hay. In experiment 1, we determined the minimum inhibitory concentration and minimum fungicidal concentration of 4 sodium lignosulfonates, 1 magnesium lignosulfonate, 2 chitosans, and PRP (positive control) against Aspergillus amoenus, Mucor circinelloides, Penicillium solitum, and Debaromyces hansenii at pH 4 and 6. Among sodium lignosulfonates, the one from Sappi Ltd. (NaSP) was the most antifungal at pH 4. However, chitosans had the strongest fungicidal activity with the exception of M. circinelloides at both pH 4 and 6. PRP had more antifungal effects than NaSP and was only better than chitosans for M. circinelloides. In experiment 2, we evaluated the effects of 3 additives (ADV): optimized NaSP (NaSP-O, UMaine), naïve chitosan (ChNv, Sigma-Aldrich), and PRP on high-moisture alfalfa hay. The experimental design was a randomized complete block design replicated 5 times. Treatment design was the factorial combination of 3 ADV× 5 doses (0, 0.25, 0.5, 1, and 2% w/w fresh basis). Additives were added to 35 g of sterile alfalfa hay (71.5 ± 0.23% DM), inoculated with a mixture of previously isolated spoilage fungi (5.8 log cfu/fresh g), and aerobically incubated in vitro for 23 d (25°C). After incubation, DM losses were reduced by doses as low as 0.25% for both NaSP-O and PRP (x=1.61) vs. untreated hay (24.0%), partially due to the decrease of mold and yeast counts as their doses increased. Also, hay NH3-N was lower in NaSP-O and PRP, with doses as low as 0.25%, relative to untreated hay (x= 1.13 vs 7.80% of N, respectively). Both NaSP-O and PRP increased digestible DM recovery (x= 69.7) and total volatile fatty acids (x= 94.3), with doses as low as 0.25%, compared with untreated hay (52.7% and 83.8 mM, respectively). However, ChNv did not decrease mold nor yeast counts (x= 6.59 and x= 6.16 log cfu/fresh g; respectively) and did not prevent DM losses relative to untreated hay. Overall, when using an alfalfa hay substrate in vitro, NaSP-O was able to prevent fungal spoilage to a similar extent to PRP. Thus, further studies are warranted to develop NaSP-O as a hay preservative under field conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.