This research reports for the first time the full-scale application of different homogeneous Advanced Oxidation Processes (AOPs) (H 2 O 2 /UV-C, PMS/UV-C and PMS/Fe(II)/UV-C) for the removal of antibiotics (ABs) and antibiotic resistance genes (ARGs) from wastewater effluent at Estiviel wastewater treatment plant (WWTP) (Toledo, Spain). AOPs based on the photolytic decomposition of H 2 O 2 and peroxymonosulfate tested at low dosages (0.05-0.5 mM) and with very low UV-C contact time (4-18 s) demonstrated to be more efficient than UV-C radiation alone on the removal of the analyzed ABs. PMS (0.5 mM) combined with UV-C (7 s contact time) was the most efficient treatment in terms of AB removal: 7 out of 10 ABs detected in the wastewater were removed more efficiently than using the other oxidants. In terms of ARGs removal efficiency, H 2 O 2 /UV-C seemed the most efficient treatment, although PMS/UV-C and PMS/Fe(II)/UV-C were supposed to generate higher concentrations of free radicals. The results show that treatments with the highest removal of ABs and ARGs did not coincide, which could be attributed to the competition between DNA and oxidants in the absorption of UV photons, reducing the direct photolysis of the DNA. Whereas the photolytic ABs removal is improved by the generation of hydroxyl and sulfate radicals, the opposite behavior occurs in the case of ARGs. These results suggest that a compromise between ABs and ARGs removal must be achieved in order to optimize wastewater treatment processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.