Funding information Natural Sciences and Engineering Research Council (NSERC) of CanadaGamma regression is applied in several areas such as life testing, forecasting cancer incidences, genomics, rainfall prediction, experimental designs, and quality control. Gamma regression models allow for a monotone and no constant hazard in survival models. Owing to the broad applicability of gamma regression, we propose some novel and improved methods to estimate the coefficients of gamma regression model. We combine the unrestricted maximum likelihood (ML) estimators and the estimators that are restricted by linear hypothesis, and we present Stein-type shrinkage estimators (SEs). We then develop an asymptotic theory for SEs and obtain their asymptotic quadratic risks. In addition, we conduct Monte Carlo simulations to study the performance of the estimators in terms of their simulated relative efficiencies. It is evident from our studies that the proposed SEs outperform the usual ML estimators. Furthermore, some tabular and graphical representations are given as proofs of our assertions. This study is finally ended by appraising the performance of our estimators for a real prostate cancer data. KEYWORDS asymptotic quadratic risk, gamma regression, positive-part Stein-type shrinkage estimator, prostate cancer, relative efficiency, Stein-type shrinkage estimator 4310
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.