Current voltage measurement of three different PEDOT:PSS printed lines Figure S1. Current-voltage characteristics of all three different PEDOT:PSS printed lines. Inset (a) optical micrograph and (b) thickness profiles of the printed lines.
A highly conductive, air stable and scalable poly(3,4-ethylenedioxythiophene) (PEDOT): poly(4-styrenesulfonate) (PEDOT:PSS) are prepared by using mass production ultrafiltration. By effectively removing excess PSS and various reaction impurities using repeated 100 nm pore membrane filtration, purified PEDOT:PSS exhibit conductivity as high as 2000 S cm .
Although hydroxyapatite (HA)-based porous scaffolds have been widely researched in the last three decades, the development of naturally derived biomimetic HA with a tunable elastic modulus and strength together with faster biomineralization properties has not yet been achieved. To address this specific issue, we report here a scalable biogenic synthesis approach to obtain submicron HA powders from cuttlefish bone. The marine-resource-derived HA together with different pore formers can be conventionally sintered to produce physiologically relevant scaffolds with porous architecture. Depending on pore formers, the scaffolds with a range of porosity of up to 51% with a larger range of pore sizes up to 50 μm were fabricated. An empirical relationship between the compression strength and the elastic modulus with fractional porosity was established. A combination of moderate compressive strength (12−15 MPa) with an elastic modulus up to 1.6 GPa was obtained from cuttlefish-bone-derived HA with wheat flour as the pore former. Most importantly, the specific HA scaffold supports the faster nucleation and growth of the biomineralized apatite layer with full coverage within 3 days of incubation in simulated body fluid. More importantly, the marine-species-derived HA supported better adhesion and proliferation of murine osteoblast cells than HA sintered using powders from nonbiogenic resources. The spectrum of physical and biomineralization properties makes cuttlefish-bone-derived porous HA a new generation of implantable biomaterial for potential application in cancellous bone regeneration.
Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatmentassisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.