The China-origin H7N9 low pathogenicity avian influenza virus (LPAIV) emerged as a zoonotic threat in 2013 where it continues to circulate in live poultry markets. Absence of overt clinical signs in poultry is a typical LPAIV infection outcome, and has contributed to its insidious maintenance in China. This study is the first description of H7N9 LPAIV (A/Anhui/1/13) infection in turkeys, with efficient transmission to two additional rounds of introduced contact turkeys which all became infected during cohousing. Surprisingly, mortality was observed in six of eight (75%) second-round contact turkeys which is unusual for LPAIV infection, with unexpected systemic dissemination to many organs beyond the respiratory and enteric tracts, but interestingly no accompanying mutation to highly pathogenic AIV. The intravenous pathogenicity index score for a turkey-derived isolate (0.39) affirmed the LPAIV phenotype. However, the amino acid change L235Q in the haemagglutinin gene occurred in directly-infected turkeys and transmitted to the contacts, including those that died and the two which resolved infection to survive to the end of the study. This polymorphism was indicative of a reversion from mammalian to avian adaptation for the H7N9 virus. This study underlined a new risk to poultry in the event of H7N9 spread beyond China.
The initial incursion of pandemic (H1N1) 2009 influenza A virus (pH1N1) into a European pig population is reported. Diagnosis of swine influenza caused by pandemic virus was made during September 2009 following routine submission of samples for differential diagnosis of causative agents of respiratory disease, including influenza A virus. All four pigs (aged six weeks) submitted for investigation from a pig herd of approximately 5000 animals in Northern Ireland, experiencing acute-onset respiratory signs in finishing and growing pigs, were positive by immunofluorescence for influenza A. Follow-up analysis of lung tissue homogenates by real-time RT-PCR confirmed the presence of pH1N1. The virus was subsequently detected on two other premises in Northern Ireland; on one premises, detection followed the pre-export health certification testing of samples from pigs presumed to be subclinically infected as no clinical signs were apparent. None of the premises was linked to another epidemiologically. Sequencing of the haemagglutinin and neuraminidase genes revealed high nucleotide identity (>99.4 per cent) with other pH1N1s isolated from human beings. Genotypic analyses revealed all gene segments to be most closely related to those of contemporary pH1N1 viruses in human beings. It is concluded that all three outbreaks occurred independently, potentially as a result of transmission of the virus from human beings to pigs.
Since 2020, the UK and Europe, have experienced annual epizootics of high pathogenicity avian influenza virus (HPAIV). The first during autumn/winter 2020/21 involved the detected with six H5Nx subtypes although H5N8 HPAIV dominated in the UK. Whilst genetic assessment of the H5N8 HPAIVs within the UK demonstrated relative homogeneity, there was a background of other genotypes circulating at a lower degree with different neuraminidase and internal genes. Following a small number of summer detections of H5N1 in wild birds over the summer of 2021, autumn/winter 2021/22 saw another European H5 HPAIV epizootic, that has dwarfed the prior epizootic. This second epizootic was dominated almost exclusively by H5N1 HPAIV, although six distinct genotypes were defined. We have used genetic analysis to evaluate the emergence of different genotypes and proposed reassortment events that have been observed. The existing data suggests that the H5N1 circulating in Europe during late 2020, continued to circulate in wild birds throughout 2021, with minimal adaptation, but has then gone on to reassort with AIVs in the wild bird population. We have undertaken an in-depth genetic assessment of H5 HPAIVs detected in the UK, over the last two winter seasons and demonstrate the utility of in-depth genetic analyses in defining the diversity of H5 HPAIVs circulating in avian species, the potential for zoonotic risk and whether incidents of lateral spread can be defined over independent incursion of infection from wild birds. Key supporting data for mitigation activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.